Tree-Based Integration of One-versus-Some (OVS) Classifiers for Multiclass Classification
نویسندگان
چکیده
Motivated by applications such as gene expression analysis, binary classification has achieved notable success. (e.g., cancer samples versus normal samples) When comes to multiclass classification, the extension is not straightforward. There has been two main directions on such extensions: 1) via a sequence of nested binary classifiers in a classification tree or 2) via classifier ensembles that integrate votes from all oneversus all (OVA) classifiers or all all-pairs (AP) classifiers. In this article, we present a new way to combine both strategies in a multiclass classification.
منابع مشابه
Comparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images
Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...
متن کاملEnhanced Performance for Support Vector Machines as Multiclass Classifiers in Steel Surface Defect Detection
Steel surface defect detection is essentially one of pattern recognition problems. Support Vector Machines (SVMs) are known as one of the most proper classifiers in this application. In this paper, we introduce a more accurate classification method by using SVMs as our final classifier of the inspection system. In this scheme, multiclass classification task is performed based on the ”one-agains...
متن کاملA survey of variable selection methods and multiclass learning in bio informatics
Feature selection based data mining methods is one of the most important research directions in the fields of machine learning in recent years. This paper presents a review of assorted feature selection methods named filter, wrapper and embedded and multiclass classifiers like support vector machines (SVM), decision tree, averaged perceptron and neural network. Additionally it conveys an assess...
متن کاملMulticlass Cancer Classification by Using Fuzzy Support Vector Machine and Binary Decision Tree With Gene Selection
We investigate the problems of multiclass cancer classification with gene selection from gene expression data. Two different constructed multiclass classifiers with gene selection are proposed, which are fuzzy support vector machine (FSVM) with gene selection and binary classification tree based on SVM with gene selection. Using F test and recursive feature elimination based on SVM as gene sele...
متن کاملA novel hybrid method for vocal fold pathology diagnosis based on russian language
In this paper, first, an initial feature vector for vocal fold pathology diagnosis is proposed. Then, for optimizing the initial feature vector, a genetic algorithm is proposed. Some experiments are carried out for evaluating and comparing the classification accuracies which are obtained by the use of the different classifiers (ensemble of decision tree, discriminant analysis and K-nearest neig...
متن کامل