Intoxication of Host Cells by the T3SS Phospholipase ExoU: PI(4,5)P2-Associated, Cytoskeletal Collapse and Late Phase Membrane Blebbing

نویسندگان

  • Hiromi Sato
  • Dara W. Frank
چکیده

Pseudomonas aeruginosa is an opportunistic pathogen that is associated with hospital-acquired infections, ventilator-associated pneumonia, and morbidity of immunocompromised individuals. A subpopulation of P. aeruginosa encodes a protein, ExoU, which exhibits acute cytotoxicity. Toxicity is directly related to the phospholipase A2 activity of the protein after injection into the host cytoplasm via a type III secretion system. ExoU enzymatic activity requires eukaryotic cofactors, ubiquitin or ubiquitin-modified proteins. When administered extracellularly, ExoU is unable to intoxicate epithelial cells in culture, even in the presence of the cofactor. Injection or transfection of ExoU is necessary to observe the acute cytotoxic response. Biochemical approaches indicate that ExoU possesses high affinity to a multifunctional phosphoinositide, phosphatidylinositol 4,5-bisphosphate or PI(4,5)P2 and that it is capable of utilizing this phospholipid as a substrate. In eukaryotic cells, PI(4,5)P2 is mainly located in the cytoplasmic side of the plasma membrane and anchors adaptor proteins that are involved in cytoskeletal structures, focal adhesions, and plasma membranes. Time-lapse fluorescent microscopy analyses of infected live cells demonstrate that ExoU intoxication correlates with intracellular damage in the early phases of infection, such as disruption of focal adhesions, cytoskeletal collapse, actin depolymerization, and cell rounding. At later time points, a membrane blebbing phenotype was prominent prior to the loss of the plasma membrane integrity and barrier function. Membrane blebbing appears to accelerate membrane rupture and the release of intracellular markers. Our data suggest that in eukaryotic host cells, intracellular ExoU targets and hydrolyzes PI(4,5)P2 on the plasma membrane, causing a subsequent disruption of cellular structures and membrane integrity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Basis of Cytotoxicity Mediated by the Type III Secretion Toxin ExoU from Pseudomonas aeruginosa

The type III secretion system (T3SS) is a complex macromolecular machinery employed by a number of Gram-negative pathogens to inject effectors directly into the cytoplasm of eukaryotic cells. ExoU from the opportunistic pathogen Pseudomonas aeruginosa is one of the most aggressive toxins injected by a T3SS, leading to rapid cell necrosis. Here we report the crystal structure of ExoU in complex ...

متن کامل

Detachment of surface membrane invagination systems by cationic amphiphilic drugs

Several cell types develop extensive plasma membrane invaginations to serve a specific physiological function. For example, the megakaryocyte demarcation membrane system (DMS) provides a membrane reserve for platelet production and muscle transverse (T) tubules facilitate excitation:contraction coupling. Using impermeant fluorescent indicators, capacitance measurements and electron microscopy, ...

متن کامل

Inhibitors of PI(4,5)P2 synthesis reveal dynamic regulation of IgE receptor signaling by phosphoinositides in RBL mast cells.

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a versatile phospholipid that participates in many membrane-associated signaling processes. PI(4,5)P2 production at the plasma membrane (PM) depends on levels of its precursor, phosphatidylinositol 4-phosphate (PI4P), synthesized principally by two intracellular enzymes, PI4-kinases IIIα and IIIb; the former is preferentially inhibited by phe...

متن کامل

Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation.

Synthesis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], a signaling phospholipid, is primarily carried out by phosphatidylinositol 4-phosphate 5-kinase [PI(4)P5K], which has been reported to be regulated by RhoA and Rac1. Unexpectedly, we find that the GTPgammaS-dependent activator of PI(4)P5Kalpha is the small G protein ADP-ribosylation factor (ARF) and that the activation strictly req...

متن کامل

The Hidden Conundrum of Phosphoinositide Signaling in Cancer.

Phosphoinositide 3-kinase (PI3K) generation of PI(3,4,5)P3 from PI(4,5)P2 and the subsequent activation of Akt and its downstream signaling cascades (e.g. mTORC1) dominates the landscape of phosphoinositide signaling axis in cancer research. However, PI(4,5)P2 is breaking its boundary as merely a substrate for PI3K and phospholipase C (PLC), and is now an established lipid messenger pivotal for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014