Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors.

نویسندگان

  • Patrick V Almeida
  • Mohammad-Ali Shahbazi
  • Ermei Mäkilä
  • Martti Kaasalainen
  • Jarno Salonen
  • Jouni Hirvonen
  • Hélder A Santos
چکیده

Active targeting of nanoparticles to receptor-overexpressing cancer cells has great potential for enhancing the cellular uptake of nanoparticles and for reducing fast clearance of the nanoparticles from the body. Herein, we present a preparation method of a porous silicon (PSi)-based nanodelivery system for breast cancer targeting, by covalently conjugating a synthesized amide-modified hyaluronic acid (HA(+)) derived polymer on the surface of undecylenic acid-modified thermally hydrocarbonized PSi (UnTHCPSi) nanoparticles. The resulting UnTHCPSi-HA(+) nanoparticles showed relatively small size, reduced polydispersibility, high biocompatibility, improved colloidal and human plasma stability, as well as enhanced cellular interactions and internalization. Moreover, we demonstrated that the enhanced cellular association of UnTHCPSi-HA(+) relies on the capability of the conjugated HA(+) to bind and consequently target CD44 receptors expressed on the surface of breast cancer cells, thus making the HA(+)-functionalized UnTHCPSi nanoparticles a suitable and promising nanoplatform for the targeting of CD44-overexpressing breast tumors and for drug delivery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyaluronic acid-functionalized bismuth oxide nanoparticles for computed tomography imaging-guided radiotherapy of tumor

The inherent radioresistance and inaccuracy of localization of tumors weaken the clinical implementation effectiveness of radiotherapy. To overcome these limitations, hyaluronic acid-functionalized bismuth oxide nanoparticles (HA-Bi2O3 NPs) were synthesized by one-pot hydrothermal method for target-specific computed tomography (CT) imaging and radiosensitization of tumor. After functionalizatio...

متن کامل

Active targeting of HER2-positive breast cancer cells by Herceptin-functionalized organically modified silica nanoparticles

Normal micelle microemulsion method was utilized for fabrication of organically modified silica (ORMOSIL) nanoparticles. The void and dye-doped nanoparticles were synthesized in nonpolar core of two different surfactants including Aerosol OT and Tween 80. The nanoparticles were characterized using transmission electron microscopy, dynamic light scattering, and zeta potential analysis. Our resul...

متن کامل

Mesoporous silica nanoparticle-based intelligent drug delivery system for bienzyme-responsive tumour targeting and controlled release

This paper proposes a novel type of multifunctional envelope-type mesoporous silica nanoparticle (MSN) to achieve cancer cell targeting and drug-controlled release. In this system, MSNs were first modified by active targeting moiety hyaluronic acid (HA) for breast cancer cell targeting and hyaluronidases (Hyal)-induced intracellular drug release. Then gelatin, a proteinaceous biopolymer, was gr...

متن کامل

Hyaluronic acid-modified manganese-chelated dendrimer-entrapped gold nanoparticles for the targeted CT/MR dual-mode imaging of hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is the most common malignant tumor of the liver. The early and effective diagnosis has always been desired. Herein, we present the preparation and characterization of hyaluronic acid (HA)-modified, multifunctional nanoparticles (NPs) targeting CD44 receptor-expressing cancer cells for computed tomography (CT)/magnetic resonance (MR) dual-mode imaging. We first mod...

متن کامل

Dual-Labeled Near-Infrared/99mTc Imaging Probes Using PAMAM-Coated Silica Nanoparticles for the Imaging of HER2-Expressing Cancer Cells

We sought to develop dual-modality imaging probes using functionalized silica nanoparticles to target human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer cells and achieve efficient target imaging of HER2-expressing tumors. Polyamidoamine-based functionalized silica nanoparticles (PCSNs) for multimodal imaging were synthesized with near-infrared (NIR) fluorescence (indo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 17  شماره 

صفحات  -

تاریخ انتشار 2014