Targeted release of stromal cell-derived factor-1α by reactive oxygen species-sensitive nanoparticles results in bone marrow stromal cell chemotaxis and homing, and repair of vascular injury caused by electrical burns

نویسندگان

  • Fang He
  • Peng-Fei Luo
  • Tao Tang
  • Fang Zhang
  • He Fang
  • Shi-Zhao Ji
  • Yu Sun
  • Guo-Sheng Wu
  • Bo-Han Pan
  • Zhi-Bao Huo
  • Guang-Yi Wang
  • Zhao-Fan Xia
چکیده

Rapid repair of vascular injury is an important prognostic factor for electrical burns. This repair is achieved mainly via stromal cell-derived factor (SDF)-1α promoting the mobilization, chemotaxis, homing, and targeted differentiation of bone marrow mesenchymal stem cells (BMSCs) into endothelial cells. Forming a concentration gradient from the site of local damage in the circulation is essential to the role of SDF-1α. In a previous study, we developed reactive oxygen species (ROS)-sensitive PPADT nanoparticles containing SDF-1α that could degrade in response to high concentration of ROS in tissue lesions, achieving the goal of targeted SDF-1α release. In the current study, a rat vascular injury model of electrical burns was used to evaluate the effects of targeted release of SDF-1α using PPADT nanoparticles on the chemotaxis of BMSCs and the repair of vascular injury. Continuous exposure to 220 V for 6 s could damage rat vascular endothelial cells, strip off the inner layer, significantly elevate the local level of ROS, and decrease the level of SDF-1α. After injection of Cy5-labeled SDF-1α-PPADT nanoparticles, the distribution of Cy5 fluorescence suggested that SDF-1α was distributed primarily at the injury site, and the local SDF-1α levels increased significantly. Seven days after injury with nanoparticles injection, aggregation of exogenous green fluorescent protein-labeled BMSCs at the injury site was observed. Ten days after injury, the endothelial cell arrangement was better organized and continuous, with relatively intact vascular morphology and more blood vessels. These results showed that SDF-1α-PPADT nanoparticles targeted the SDF-1α release at the site of injury, directing BMSC chemotaxis and homing, thereby promoting vascular repair in response to electrical burns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simvastatin combined with bone marrow mesenchymal stromal cells (BMSCs) improve burn wound healing by ameliorating angiogenesis through SDF-1α/CXCR4 pathway

Objective(s): Chemokines are wound mediators that promote angiogenesis during wound healing. We hypothesized that Simvastatin in combination with the bone marrow mesenchymal stromal cells (BMSCs) improve burn wound healing by ameliorating angiogenesis via SDF-1α/CXCR4 pathway.Materials and Methods: Under general anesthesia, deep partial-...

متن کامل

Repair of Spinal Cord Injury (SCI) Using Bone Marrow Stromal Cell Transfected with Adenoviral Vector Expressing Glial derived Neurotropic Factor (GDNF) in a Rat SCI Model

Back ground  Subsequent to spinal cord injury many pathological changes may occur that could lead to inappropriate environment for repair. The Most important of such changes is the death of neurons. Exogenous administration of growth factors that modulate neuronal survival, synaptic plasticity, and neurotransmission has been proposed as a potential therapeutic treatment for SCI. Among these gr...

متن کامل

Low-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo

Objective(s):To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo. Materials and Methods:Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To t...

متن کامل

A new method of wound treatment: targeted therapy of skin wounds with reactive oxygen species-responsive nanoparticles containing SDF-1α

OBJECTIVE To accelerate wound healing through promoting vascularization by using reactive oxygen species (ROS)-responsive nanoparticles loaded with stromal cell-derived factor-1α(SDF-1α). METHODS The ROS-reactive nanomaterial poly-(1,4-phenyleneacetone dimethylene thioketal) was synthesized, and its physical and chemical properties were characterized. ROS-responsive nanoparticles containing S...

متن کامل

Comparison of Transplantation of Bone Marrow Stromal Cells (BMSC) and Stem Cell Mobilization by Granulocyte Colony Stimulating Factor after Traumatic Brain Injury in Rat

Background: Recent clinical studies of treating traumatic brain injury (TBI) with autologous adult stem cells led us to compare effect of intravenous injection of bone marrow mesenchymal stem cells (BMSC) and bone marrow hematopoietic stem cell mobilization, induced by granulocyte colony stimulating factor (G-CSF), in rats with a cortical compact device. Methods: Forty adult male Wistar rats w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018