The Hyperarid Core of the Atacama Desert, an Extremely Dry and Carbon Deprived Habitat of Potential Interest for the Field of Carbon Science

نویسندگان

  • Armando Azua-Bustos
  • Carlos González-Silva
  • Gino Corsini
چکیده

The Atacama Desert in Chile is the driest and oldest desert on Earth, also considered one of the best Mars analog models. Here, several heterotrophic microbial communities have been discovered in its driest regions, with the ones present in the soil subsurface being one of the most interesting due to its existence in a habitat with almost no water available and almost undetectable organic carbon sources. Our recent discovery of the driest site of the Atacama known to date (and the heterotrophic microbial species that are able to survive in this site) reaffirms the opportunity to better characterize the physiological and molecular mechanisms that these species use to detect, mobilize, incorporate and use carbon under these extremely harsh conditions. Here we summarize what has been reported up to date on the organic carbon concentrations in different sites of the hyperarid core of the Atacama Desert, proposing that due to the meager amounts of carbon and extremely dry conditions, the microbial communities of the hyperarid core of the Atacama Desert may be of interest for the field of carbon science.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In situ metabolism in halite endolithic microbial communities of the hyperarid Atacama Desert

The Atacama Desert of northern Chile is one of the driest regions on Earth, with areas that exclude plants and where soils have extremely low microbial biomass. However, in the driest parts of the desert there are microorganisms that colonize the interior of halite nodules in fossil continental evaporites, where they are sustained by condensation of atmospheric water triggered by the salt subst...

متن کامل

Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert.

In the driest parts of the Atacama Desert there are no visible life forms on soil or rock surfaces. The soil in this region contains only minute traces of bacteria distributed in patches, and conditions are too dry for cyanobacteria that live under translucent stones. Here we show that halite evaporite rocks from the driest part of the Atacama Desert are colonized by cyanobacteria. This coloniz...

متن کامل

Potential of Carbon Sequestration of Hammada salicornica Vegetation Type in Desert Areas (Case Study: South Khorasan, Iran)

Climate change due to increasing the level of greenhouse gases including CO2 is the main environmental issue of the world in the new century. One of the effective way for reducing atmospheric CO2 is carbon sequestration by plants and soils. A vast area of Iran has desert condition with special adapted plant species in which can be devoted for carbon sequestration. Hammada salicornica as a shrub...

متن کامل

Bacterial community structure in the hyperarid core of the Atacama Desert, Chile.

Soils from the hyperarid Atacama Desert of northern Chile were sampled along an east-west elevational transect (23.75 to 24.70 degrees S) through the driest sector to compare the relative structure of bacterial communities. Analysis of denaturing gradient gel electrophoresis (DGGE) profiles from each of the samples revealed that microbial communities from the extreme hyperarid core of the deser...

متن کامل

Carbon sequestration potential in soil and stand of Nitraria schoberi L.

Arid and semi-arid lands cover around one-third of the world's terrestrial expanse and their widespread plantdistributions provide these areas with a high potential for sequestering carbon. Vegetation management for developingshrub or tree species in arid and semi-arid regions is one inexpensive and multi-purpose approach for decreasing CO2.This study assessed the potential of carbon sequestrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017