BDNF and activity-dependent synaptic modulation.

نویسنده

  • Bai Lu
چکیده

It is widely accepted that neuronal activity plays a pivotal role in synaptic plasticity. Neurotrophins have emerged recently as potent factors for synaptic modulation. The relationship between the activity and neurotrophic regulation of synapse development and plasticity, however, remains unclear. A prevailing hypothesis is that activity-dependent synaptic modulation is mediated by neurotrophins. An important but unresolved issue is how diffusible molecules such as neurotrophins achieve local and synapse-specific modulation. In this review, I discuss several potential mechanisms with which neuronal activity could control the synapse-specificity of neurotrophin regulation, with particular emphasis on BDNF. Data accumulated in recent years suggest that neuronal activity regulates the transcription of BDNF gene, the transport of BDNF mRNA and protein into dendrites, and the secretion of BDNF protein. There is also evidence for activity-dependent regulation of the trafficking of the BDNF receptor, TrkB, including its cell surface expression and ligand-induced endocytosis. Further study of these mechanisms will help us better understand how neurotrophins could mediate activity-dependent plasticity in a local and synapse-specific manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BDNF in Synaptic Plasticity and Memory

Among members of the neurotrophin family, brainderived neurotrophic factor (BDNF) stands out for its ability to regulate synaptic plasticity and various cognitive functions of the brain. A Medline search with the terms ‘BDNF’ and ‘synaptic’ yields more than 700 research articles, mostly published in the last 7 years. Given that neurotrophins were initially defined as secretory factors that prom...

متن کامل

BDNF modulation of NMDA receptors is activity dependent.

Brain-derived neurotrophic factor (BDNF), a potent modulator of synaptic transmission, is known to influence associative synaptic plasticity and refinement of neural connectivity. We now show that BDNF modulation of glutamate currents in hippocampal neurons exhibits the additional property of use dependence, a postsynaptic mechanism resulting in selective modulation of active channels. We demon...

متن کامل

LTP mechanisms in the dentate gyrus in vivo: BDNF signaling, translation control, and gene function

Protein synthesis underlying activity-dependent synaptic plasticity is controlled at the level of mRNA translation. We examined the dynamics and spatial regulation of two key translation factors, eukaryotic initiation factor 4E (eIF4E) and elongation factor-2 (eEF2), during long-term potentiation (LTP) induced by local infusion of brain-derived neurotrophic factor (BDNF) into the dentate gyrus ...

متن کامل

The Biological Actions and Mechanisms of Brain-Derived Neurotrophic Factor in Healthy and Disordered Brains

Brain-derived neurotrophic factor (BDNF) is a neurotrophin that elicits neuronal survival and differentiation, synaptic transmission, and the modulation of synaptic plasticity. The biological actions of BDNF are mediated via two distinct receptors: the high-affinity tropomyosin-related kinase B (TrkB) receptor and the low-affinity p75 neurotrophin receptor (p75NTR). Recent findings regarding th...

متن کامل

Activity-dependent BDNF release via endocytic pathways is regulated by synaptotagmin-6 and complexin.

Brain-derived neurotrophic factor (BDNF) is known to modulate synapse development and plasticity, but the source of synaptic BDNF and molecular mechanisms regulating BDNF release remain unclear. Using exogenous BDNF tagged with quantum dots (BDNF-QDs), we found that endocytosed BDNF-QDs were preferentially localized to postsynaptic sites in the dendrite of cultured hippocampal neurons. Repetiti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Learning & memory

دوره 10 2  شماره 

صفحات  -

تاریخ انتشار 2003