Osteoblast-Specific Transcription Factor Osterix Increases Vitamin D Receptor Gene Expression in Osteoblasts
نویسندگان
چکیده
Osterix (Osx) is an osteoblast-specific transcription factor required for osteoblast differentiation from mesenchymal stem cells. In Osx knock-out mice, no bone formation occurs. The vitamin D receptor (VDR) is a member of the nuclear hormone receptor superfamily that regulates target gene transcription to ensure appropriate control of calcium homeostasis and bone development. Here, we provide several lines of evidence that show that the VDR gene is a target for transcriptional regulation by Osx in osteoblasts. For example, calvaria obtained from Osx-null embryos displayed dramatic reductions in VDR expression compared to wild-type calvaria. Stable overexpression of Osx stimulated VDR expression in C2C12 mesenchymal cells. Inhibition of Osx expression by siRNA led to downregulation of VDR. In contrast, Osx levels remained unchanged in osteoblasts in VDR-null mice. Mechanistic approaches using transient transfection assays showed that Osx directly activated a 1 kb fragment of the VDR promoter in a dose-dependent manner. To define the region of the VDR promoter that was responsive to Osx, a series of VDR promoter deletion mutants were examined and the minimal Osx-responsive region was refined to the proximal 120 bp of the VDR promoter. Additional point mutants were used to identify two GC-rich regions that were responsible for VDR promoter activation by Osx. Chromatin immunoprecipitation assays demonstrated that endogenous Osx was associated with the native VDR promoter in primary osteoblasts in vivo. Cumulatively, these data strongly support a direct regulatory role for Osx in VDR gene expression. They further provide new insight into potential mechanisms and pathways that Osx controls in osteoblasts and during the process of osteoblastic cell differentiation.
منابع مشابه
The transcription factor osterix (SP7) regulates BMP6-induced human osteoblast differentiation.
The transcription factor osterix (Sp7) is essential for osteoblastogenesis and bone formation in mice. Genome wide association studies have demonstrated that osterix is associated with bone mineral density in humans; however, the molecular significance of osterix in human osteoblast differentiation is poorly described. In this study we have characterized the role of osterix in human mesenchymal...
متن کاملOsterix, a transcription factor for osteoblast differentiation, mediates antitumor activity in murine osteosarcoma.
Osterix is a novel zinc finger-containing transcription factor that is essential for osteoblast differentiation and bone formation. We hypothesized that osterix might have a role in osteosarcoma tumor growth and metastasis. Northern blot analysis showed that the mRNA level of osterix was decreased in two mouse osteosarcoma cell lines compared with its level in normal mouse osteoblasts. Osterix ...
متن کاملRegulation of the osteoblast-specific transcription factor Osterix by NO66, a Jumonji family histone demethylase
Osterix (Osx) is an osteoblast-specific transcription factor required for osteoblast differentiation and bone formation. Osx null mice develop a normal cartilage skeleton but fail to form bone and to express osteoblast-specific marker genes. To better understand the control of transcriptional regulation by Osx, we identified Osx-interacting proteins using proteomics approaches. Here, we report ...
متن کاملNELL-1, an Osteoinductive Factor, Is a Direct Transcriptional Target of Osterix
NELL-1 is a novel secreted protein associated with premature fusion of cranial sutures in craniosynostosis that has been found to promote osteoblast cell differentiation and mineralization. Our previous study showed that Runx2, the key transcription factor in osteoblast differentiation, transactivates the NELL-1 promoter. In this study, we evaluated the regulatory involvement and mechanisms of ...
متن کاملRegulation of the osterix (Osx, Sp7) promoter by osterix and its inhibition by parathyroid hormone
Osterix (Osx, Sp7) is a zinc-finger transcription factor belonging to the specificity protein (Sp) family expressed in cells of the osteoblast lineage in the developing skeleton where it regulates expression of a number of osteoblastic genes. We previously reported inhibition of osterix mRNA and protein by parathyroid hormone (PTH) stimulation of cAMP in osteoblasts. We here show that Osx expre...
متن کامل