Functional analysis of a mammalian odorant receptor subfamily.
نویسندگان
چکیده
Phylogenetic analysis groups mammalian odorant receptors into two broad classes and numerous subfamilies. These subfamilies are proposed to reflect functional organization. Testing this idea requires an assay allowing detailed functional characterization of odorant receptors. Here we show that a variety of Class I and Class II mouse odorant receptors can be functionally expressed in Xenopus laevis oocytes. Receptor constructs included the N-terminal 20 residues of human rhodopsin and were co-expressed with Galphaolf and the cystic fibrosis transmembrane regulator to allow electrophysiological measurement of receptor responses. For most mouse odorant receptors tested, these conditions were sufficient for functional expression. Co-expression of accessory proteins was required to allow functional surface expression of some mouse odorant receptors. We used this assay to examine the receptive ranges of all members of the mouse odorant receptor 42 (MOR42) subfamily. MOR42-1 responded to dicarboxylic acids, preferring a 10-12 carbon chain length. MOR42-2 responded to monocarboxylic acids (7-10 carbons). MOR42-3 responded to dicarboxylic acids (8-10 carbons) and monocarboxylic acids (10-12 carbons). Thus, the receptive range of each receptor was unique. However, overlap between the individual receptive ranges suggests that the members of this subfamily form one contiguous subfamily receptive range, suggesting that odorant receptor subfamilies do constitute functional units.
منابع مشابه
Functional Evolution of Mammalian Odorant Receptors
The mammalian odorant receptor (OR) repertoire is an attractive model to study evolution, because ORs have been subjected to rapid evolution between species, presumably caused by changes of the olfactory system to adapt to the environment. However, functional assessment of ORs in related species remains largely untested. Here we investigated the functional properties of primate and rodent ORs t...
متن کاملTwo classes of olfactory receptors in xenopus laevis
Xenopus laevis possess a gene repertoire encoding two distinct classes of olfactory receptors: one class related to receptors of fish and one class similar to receptors of mammals. Sequence comparison indicates that the fish-like receptors represent closely related members of only two subfamilies, whereas mammalian-like receptors are more distantly related, most of them representing a different...
متن کاملFunctional expression of a mammalian odorant receptor.
Candidate mammalian odorant receptors were first cloned some 6 years ago. The physiological function of these receptors in initiating transduction in olfactory receptor neurons remains to be established. Here, a recombinant adenovirus was used to drive expression of a particular receptor gene in an increased number of sensory neurons in the rat olfactory epithelium. Electrophysiological recordi...
متن کاملGenome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster.
Olfaction is of considerable importance to many insects in behaviors critical for survival and reproduction, including location of food sources, selection of mates, recognition of colony con-specifics, and determination of oviposition sites. An ubiquitous, but poorly understood, component of the insect's olfactory system is a group of odorant-binding proteins (OBPs) that are present at high con...
متن کاملThe Functional Evolution of Mammalian Odorant Receptors
The Functional Evolution of Mammalian Odorant Receptors by Kaylin Alexis Adipietro University Program in Genetics and Genomics Duke University Date:_______________________ Approved: ___________________________ Hiroaki Matsunami, Supervisor ___________________________ Marc Caron ___________________________ William Dan Tracey ___________________________ Christine Drea ___________________________ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurochemistry
دوره 97 5 شماره
صفحات -
تاریخ انتشار 2006