Conditional Kolmogorov complexity and universal probability

نویسنده

  • Paul M. B. Vitányi
چکیده

The conditional in conditional Kolmogorov complexity commonly is taken to be a finite binary string. The Coding Theorem of L.A. Levin connects unconditional prefix Kolmogorov complexity with the discrete universal distribution. The least upper semicomputable code-length is up to a constant equal to the negative logarithm of the greatest lower semicomputable probability mass function. We investigate conditional versions of the Coding Theorem for singleton and joint probability distributions under alternative definitions. No conditional Coding Theorem holds in the singleton case, in the joint case under the customary definition of conditional probability, but it does hold in the joint case under an alternative definition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithmic Information Theory and Kolmogorov Complexity

This document contains lecture notes of an introductory course on Kolmogorov complexity. They cover basic notions of algorithmic information theory: Kolmogorov complexity (plain, conditional, prefix), notion of randomness (Martin-Löf randomness, Mises–Church randomness), Solomonoff universal a priori probability and their properties (symmetry of information, connection between a priori probabil...

متن کامل

Applications of Kolmogorov Complexity and Universal Codes to Nonparametric Estimation of Characteristics of Time Series

We consider finite-alphabet and real-valued time series and the following four problems: i) estimation of the (limiting) probability P (x0 . . . xs) for every s and each sequence x0 · · ·xs of letters from the process alphabet (or estimation of the density p(x0, . . . , xs) for real-valued time series), ii) the so-called on-line prediction, where the conditional probability P (xt+1|x1x2 . . . x...

متن کامل

Universal distributions and time - boundedKolmogorov

The equivalence of universal measure, a priori probability and the negative exponential of Kolmogorov complexity is a well known result with signiicance both to the theory of Kolmogorov complexity and many of its applications. In this paper we consider deenitions for the time-bounded setting where similar equivalences hold. Unlike the unbounded case, time-bounded universal distributions give ri...

متن کامل

Quantum Kolmogorov Complexity and the Quantum Turing Machine

The purpose of this thesis is to give a formal definition of quantum Kolmogorov complexity and rigorous mathematical proofs of its basic properties. Classical Kolmogorov complexity is a well-known and useful measure of randomness for binary strings. In recent years, several different quantum generalizations of Kolmogorov complexity have been proposed. The most natural generalization is due to B...

متن کامل

Optimal probabilistic polynomial time compression and the Slepian-Wolf theorem: tighter version and simple proofs

We give simplify the proofs of the 2 results in Marius Zimand’s paper Kolmogorov complexity version of Slepian-Wolf coding, proceedings of STOC 2017, p22–32. The first is a universal polynomial time compression algorithm: on input ε > 0, a number k and a string x, computes in polynomial time with probability 1 − ε a program of length k+O(log(|x|/ε)) that outputs x, provided that there exists su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 501  شماره 

صفحات  -

تاریخ انتشار 2013