TRLFS study on the speciation of uranium in seepage water and pore water of heavy metal contaminated soil
نویسندگان
چکیده
In situ leaching of uranium ores with sulfuric acid during active uranium mining activity on the Gessenheap has caused longstanding environmental problems of acid mine drainage and elevated concentrations of uranium. To study there remediation measures the test site Gessenwiese, a recultivated former uranium mining heap near Ronnenburg/East Thuringia/Germany, was installed as a part of a research program of the Friedrich-Schiller University Jena to study, among other techniques, the phytoremediation capacity of native and selected plants towards uranium. In the first step the uranium speciation in surface seepage and soil pore waters from Gessenwiese, ranging in pH from 3.2 to 4.0, were studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Both types of water samples showed mono-exponential luminescence decay, indicating the presence of only one major species. The detected emission bands were found at 477.5, 491.8, 513.0, 537.2, 562.3, and 590.7 nm in case of the surface water samples, and were found at 477.2, 493.2, 513.8, 537.0, 562.4, and 590.0 nm in case of the soil water samples. These characteristic peak maxima together with the observed mono-exponential decay indicated that the uranium speciation in the seepage and soil pore waters is dominated by the uranium (VI) sulfate species UO2SO4(aq). Due to the presence of luminescence quenchers in the natural water samples the measured luminescence lifetimes of the UO2SO4(aq) species of 1.0-2.6 μs were reduced in comparison to pure uranium sulfate solutions, which show a luminescence lifetime of 4.7 μs. These results convincingly show that in the pH range of 3.2-4.0 TRLFS is a suitable and very useful technique to study the uranium speciation in naturally occurring water samples.
منابع مشابه
Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil.
Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mini...
متن کاملUranium Leaching from Contaminated Soil Utilizing Rhamnolipid, EDTA, and Citric Acid
Biosurfactants have recently gained attention as "green" agents that can be used to enhance the remediation of heavy metals and some organic matter in contaminated soils. The overall objective of this paper was to investigate rhamnolipid, a microbial produced biosurfactant, and its ability to leach uranium present in contaminated soil from an abandoned mine site. Soil samples were collected fro...
متن کاملEvaluation of background geochemical speciation of heavy metals in overburden topsoil of bituminous sand deposit area, Ondo state, Nigeria
Metals are ubiquitous within the earth crust. However, the exceptional high-level concentration of heavy metals in the soil due to natural or anthropogenic activities and the chemical forms in which they exist determine the level of risk they portend to the environment. This work was aimed at determining the background level of the presence of seven priority toxic metals (Cr, Ni, Pb, As, Cd, Cu...
متن کاملImpact of the earthworm Lumbricus terrestris ( L . ) on As , Cu , Pb and Zn mobility 1 and speciation in contaminated
17 To assess the risks that contaminated soils pose to the environment properly a greater 18 understanding of how soil biota influence the mobility of metal(loid)s in soils is 19 required. Lumbricus terrestris L. were incubated in three soils contaminated with As, 20 Cu, Pb and Zn. The concentration and speciation of metal(loid)s in pore waters and the 21 mobility and partitioning in casts were...
متن کاملSpeciation of four heavy metals in agricultural soils around DraaLasfarmine area in Marrakech (Morocco)
This study was carried out to 1. determine spatial variations of heavy metal deposition in agricultural soils of two rural communities (OuledBouAicha and Tazakourte) of about 5790 ha in a mining area near Marrakech city in Morocco; 2. to assess the extent of metallic pollution generated by the mining activity and; 3. to identify the key mechanism responsible for this contamination and its relat...
متن کامل