Bimolecular hydrogen abstraction from phenols by aromatic ketone triplets.

نویسندگان

  • Edward C Lathioor
  • William J Leigh
چکیده

Absolute rate constants for hydrogen abstraction from 4-methylphenol (para-cresol) by the lowest triplet states of 24 aromatic ketones have been determined in acetonitrile solution at 23 degrees C, and the results combined with previously reported data for roughly a dozen other compounds under identical conditions. The ketones studied include various ring-substituted benzophenones and acetophenones, alpha,alpha,alpha-trifluoroacetophenone and its 4-methoxy analog, 2-benzoylthiophene, 2-acetonaphthone, and various other polycyclic aromatic ketones such as fluorenone, xanthone and thioxanthone, and encompass n,pi*, pi,pi*(CT) and arenoid pi,pi* lowest triplets with (triplet) reduction potentials (E(red)*) varying from about -10 to -38 kcal mol(-1). The 4-methylphenoxyl radical is observed as the product of triplet quenching in almost every case, along with the corresponding hemipinacol radical in most instances. Hammett plots for the acetophenones and benzophenones are quite different, but plots of log k(Q) vs E(red)* reveal a common behavior for most of the compounds studied. The results are consistent with reaction via two mechanisms: a simple electron-transfer mechanism, which applies to the n,pi* triplet ketones and those pi,pi* triplets that possess particularly low reduction potentials, and a coupled electron-/proton-transfer mechanism involving the intermediacy of a hydrogen-bonded exciplex, which applies to the pi,pi* ketone triplets. Ketones with lowest charge-transfer pi,pi* states exhibit rate constants that vary only slightly with triplet reduction potential over the full range investigated; this is due to the compensating effect of substituents on triplet state basicity and reduction potential, which both play a role in quenching by the hydrogen-bonded exciplex mechanism. Ketones with arenoid pi,pi* states exhibit the fall-off in rate constant that is typical of photoinduced electron transfer reactions, but it occurs at a much higher potential than would be normally expected due to the effects of hydrogen-bonding on the rate of electron-transfer within the exciplex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoinduced Hydrogen Abstraction from Phenols by Aromatic Ketones. A New Mechanism for Hydrogen Abstraction by Carbonyl n,π* and π,π* Triplets

Nanosecond laser flash photolysis studies have been carried out of the kinetics of interand intramolecular phenolic hydrogen abstraction by alkoxyacetophenone, 5-alkoxyindanone, and 4-alkoxybenzophenone triplets in acetonitrile and benzene solution. Information on the geometric requirements for abstraction by carbonyl n,π* and π,π* triplets is derived from the results for a series of ketones wh...

متن کامل

Reaction dynamics in astrochemistry: low-temperature pathways to polycyclic aromatic hydrocarbons in the interstellar medium.

Bimolecular reactions of phenyl-type radicals with the C4 and C5 hydrocarbons vinylacetylene and (methyl-substituted) 1,3-butadiene have been found to synthesize polycyclic aromatic hydrocarbons (PAHs) with naphthalene and 1,4-dihydronaphthalene cores in exoergic and entrance barrierless reactions under single-collision conditions. The reaction mechanism involves the initial formation of a van ...

متن کامل

Hydrogen Abstraction Reaction of Hydroxyl Radical with 1,1-Dibromoethane and 1,2-Dibromoethane Studied by Using Semi-Classical Transition State Theory

The hydrogen abstraction reaction by OH radical from CH2BrCH2Br (R1) and CH₃CHBr2 (R2) is investigated theoretically by semi-classical transition state theory. The stationary points for both reactions are located by using ωB97X-D and KMLYP density functional methods along with cc-pVTZ basis. Single-point energy calculations are performed at the QCISD(T) and CCSD(T) levels of theory with differe...

متن کامل

Formation of polycyclic aromatic hydrocarbons from bimolecular reactions of phenyl radicals at high temperatures.

The self-reaction of the phenyl radical is one of the key reactions in combustion chemistry. Here we study this reaction in a high-temperature flow reactor by IR/UV ion dip spectroscopy, using free electron laser radiation as mid-infrared source. We identified several major reaction products based on their infrared spectra, among them indene, 1,2-dihydronaphthalene, naphthalene, biphenyl and pa...

متن کامل

Electron transfer between hydrogen-bonded pyridylphenols and a photoexcited rhenium(I) complex.

Two pyridylphenols with intramolecular hydrogen bonds between the phenol and pyridine units have been synthesized, characterized crystallographically, and investigated by cyclic voltammetry and UV/Vis spectroscopy. Reductive quenching of the triplet metal-to-ligand charge-transfer excited state of the [Re(CO)3(phen)(py)](+) complex (phen = 1,10-phenanthroline, py = pyridine) by the two pyridylp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Photochemistry and photobiology

دوره 82 1  شماره 

صفحات  -

تاریخ انتشار 2006