Maternal protein restriction leads to pancreatic failure in offspring: role of misexpressed microRNA-375.

نویسندگان

  • Olivier Dumortier
  • Charlotte Hinault
  • Nadine Gautier
  • Stéphanie Patouraux
  • Virginie Casamento
  • Emmanuel Van Obberghen
چکیده

The intrauterine environment of the fetus is a preeminent actor in long-term health. Indeed, mounting evidence shows that maternal malnutrition increases the risk of type 2 diabetes (T2D) in progeny. Although the consequences of a disturbed prenatal environment on the development of the pancreas are known, the underlying mechanisms are poorly defined. In rats, restriction of protein during gestation alters the development of the endocrine pancreas and favors the occurrence of T2D later in life. Here we evaluate the potential role of perturbed microRNA (miRNA) expression in the decreased β-cell mass and insulin secretion characterizing progeny of pregnant dams fed a low-protein (LP) diet. miRNA profiling shows increased expression of several miRNAs, including miR-375, in the pancreas of fetuses of mothers fed an LP diet. The expression of miR-375 remains augmented in neoformed islets derived from fetuses and in islets from adult (3-month-old) progeny of mothers fed an LP diet. miR-375 regulates the proliferation and insulin secretion of dissociated islet cells, contributing to the reduced β-cell mass and function of progeny of mothers fed an LP diet. Remarkably, miR-375 normalization in LP-derived islet cells restores β-cell proliferation and insulin secretion. Our findings suggest the existence of a developmental memory in islets that registers intrauterine protein restriction. Hence, pancreatic failure after in utero malnutrition could result from transgenerational transmission of miRNA misexpression in β-cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dietary Proteins, Developmental Programming, and Potential Implication in Maternal Obesity

Background: Proteins are known mainly based on their metabolic and nutritional functions including protein synthesis and a source of energy. In spite of various physiological properties attributed to proteins, their functions have neither been addressed by assessing quality of proteins nor by nutrition and dietetic practices. Methods: Studies were included if they were randomized animal studies...

متن کامل

Maternal Low-Protein Diet Modulates Glucose Metabolism and Hepatic MicroRNAs Expression in the Early Life of Offspring †

Emerging studies revealed that maternal protein restriction was associated with increased risk of type 2 diabetes mellitus in adulthood. However, the mechanisms of its effects on offspring, especially during early life of offspring, are poorly understood. Here, it is hypothesized that impaired metabolic health in offspring from maternal low-protein diet (LPD) is associated with perturbed miRNAs...

متن کامل

Gestational diabetes leads to down-regulation of CDK4-pRB-E2F1 pathway genes in pancreatic islets of rat offspring

Objective(s): The link between a hyperglycemic intrauterine environment and the development of diabetes later in life has been observed in offspring exposed to gestational diabetes mellitus (GDM), but the underlying mechanisms for this phenomenon are still not clear. Reduced β-cells mass is a determinant in the development of diabetes (type 1 and type 2 diabetes). Some recent studies have provi...

متن کامل

Argonaute2 regulates the pancreatic β-cell secretome.

Argonaute2 (Ago2) is an established component of the microRNA-induced silencing complex. Similar to miR-375 loss-of-function studies, inhibition of Ago2 in the pancreatic β-cell resulted in enhanced insulin release underlining the relationship between these two genes. Moreover, as the most abundant microRNA in pancreatic endocrine cells, miR-375 was also observed to be enriched in Ago2-associat...

متن کامل

MicroRNA-375 targets the 3-phosphoinositide-dependent protein kinase-1 gene in pancreatic carcinoma

Pancreatic carcinoma (PC) is an aggressive malignancy with one of the poorest mortality rates. It is the sixth leading cause of mortality from malignant disease in China and the fourth leading cause of cancer-related mortality in the United States. The poor outcome reflects the requirement for an improved understanding of the transcriptional control of oncogenic signaling pathways. 3-phosphoino...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 63 10  شماره 

صفحات  -

تاریخ انتشار 2014