Loss of GGN Leads to Pre-Implantation Embryonic Lethality and Compromised Male Meiotic DNA Double Strand Break Repair in the Mouse
نویسندگان
چکیده
The integrity of male germ cell genome is critical for the correct progression of spermatogenesis, successful fertilization, and proper development of the offspring. Several DNA repair pathways exist in male germ cells. However, unlike somatic cells, key components of such pathways remain largely unidentified. Gametogenetin (GGN) is a testis-enriched protein that has been shown to bind to the DNA repair protein FANCL via yeast-two-hybrid assays. This finding and its testis-enriched expression pattern raise the possibility that GGN plays a role in DNA repair during spermatogenesis. Herein we demonstrated that the largest isoform GGN1 interacted with components of DNA repair machinery in the mouse testis. In addition to FANCL, GGN1 interacted with the critical component of the Fanconi Anemia (FA) pathway FANCD2 and a downstream component of the BRCA pathway, BRCC36. To define the physiological function of GGN, we generated a Ggn null mouse line. A complete loss of GGN resulted in embryonic lethality at the very earliest period of pre-implantation development, with no viable blastocysts observed. This finding was consistent with the observation that Ggn mRNA was also expressed in lower levels in the oocyte and pre-implantation embryos. Moreover, pachytene spermatocytes of the Ggn heterozygous knockout mice showed an increased incidence of unrepaired DNA double strand breaks (DSBs). Together, our results suggest that GGN plays a role in male meiotic DSB repair and is absolutely required for the survival of pre-implantation embryos.
منابع مشابه
Valproic Acid-Mediated Reduction of DNA Double-Strand Break Reparation Capacity of Irradiated MCF-7 Cells
Introduction H istone deacetylase inhibitors (HDIs), as radiation sensitizing agents, are considered as a novel class of anti-cancer factors, which are studied in various tumor cell-lines. Valproic acid (VPA) is an HDI, which is effectively used in the treatment of epilepsy, migraines, and some particular types of depression. In this study, we evaluated the effects of VPA and ionizing radiatio...
متن کاملP-230: Analysis of TEX15 Expression in Testis Tissues of Severe Oligozoospermic and Non-Obstructive Azoospermic Men Referred to Royan Institute
Background: TEX15 is a novel protein that is required for chromosomal synapsis and meiotic recombination. Human TEX15 is located on chromosome 8(8p12 region) and expressed in testis and ovary, as is its mouse ortholog. Loss of TEX15 function in mice causes early meiotic arrest in males but not in females. Specifically, TEX15 deficient spermatocytes exhibit a failure in chromosomal synapsis. In ...
متن کاملMouse TEX15 is essential for DNA double-strand break repair and chromosomal synapsis during male meiosis
During meiosis, homologous chromosomes undergo synapsis and recombination. We identify TEX15 as a novel protein that is required for chromosomal synapsis and meiotic recombination. Loss of TEX15 function in mice causes early meiotic arrest in males but not in females. Specifically, TEX15-deficient spermatocytes exhibit a failure in chromosomal synapsis. In mutant spermatocytes, DNA double-stran...
متن کاملThe study of dose gamma rays of 192Ir source on DNA single strand break (SSB) and DNA double strand break (DSB) in soft tissue phantom
Introduction: Passage of ionizing radiation through the organs of living creatures develops clusters of damaged nucleotides inside the DNA rounds. 192Ir Gamma source is one of the most widely used sources in brachytherapy of cervical and prostate cancer. Thus, in this research, we investigated the flux of photons and its resulting secondary electrons, the single-strand break (S...
متن کاملBisphenol A impairs the double-strand break repair machinery in the germline and causes chromosome abnormalities.
Bisphenol A (BPA) is a highly prevalent constituent of plastics that has been associated with diabetes, cardiovascular disease, and an increased risk of miscarriages in humans. In mice, BPA exposure disrupts the process of meiosis; however, analysis of the affected molecular pathways is lagging and has been particularly challenging. Here we show that exposure of the nematode Caenorhabditis eleg...
متن کامل