Lycopene-induced hydroxyl radical causes oxidative DNA damage in Escherichia coli.
نویسندگان
چکیده
Lycopene, which is a well-known red carotenoid pigment, has been drawing scientific interest because of its potential biological functions. The current study reports that lycopene acts as a bactericidal agent by inducing reactive oxygen species (ROS)-mediated DNA damage in Escherichia coli. Lycopene treatment elevated the level of ROS-in particular, hydroxyl radicals ((•)OH) -which can damage DNA in E. coli. Lycopene-induced DNA damage in bacteria was confirmed and we also observed cell filamentation caused by cell division arrest, an indirect marker of the DNA damage repair system, in lycopene-treated E. coli. Increased RecA expression was observed, indicating activation of the DNA repair system (SOS response). To summarize, lycopene exerts its antibacterial effects by inducing (•)OH -mediated DNA damage that cannot be ameliorated by the SOS response. Lycopene may be a clinically useful adjuvant for current antimicrobial therapies.
منابع مشابه
Superoxide and the production of oxidative DNA damage.
The conventional model of oxidative DNA damage posits a role for superoxide (O2-) as a reductant for iron, which subsequently generates a hydroxyl radical by transferring the electron to H2O2. The hydroxyl radical then attacks DNA. Indeed, mutants of Escherichia coli that lack superoxide dismutase (SOD) were 10-fold more vulnerable to DNA oxidation by H2O2 than were wild-type cells. Even the pa...
متن کاملTiO2 photocatalysis causes DNA damage via fenton reaction-generated hydroxyl radicals during the recovery period.
Here, we show that resistance of Escherichia coli to TiO2 photocatalysis involves defenses against reactive oxygen species. Results support the idea that TiO2 photocatalysis generates damage which later becomes deleterious during recovery. We found this to be partly due to DNA attack via hydroxyl radicals generated by the Fenton reaction during recovery.
متن کاملIntracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli.
Because copper catalyzes the conversion of H(2)O(2) to hydroxyl radicals in vitro, it has been proposed that oxidative DNA damage may be an important component of copper toxicity. Elimination of the copper export genes, copA, cueO, and cusCFBA, rendered Escherichia coli sensitive to growth inhibition by copper and provided forcing circumstances in which this hypothesis could be tested. When the...
متن کاملHydroxyl radicals are involved in cell killing by the bacterial topoisomerase I cleavage complex.
Escherichia coli expressing SOS-inducing mutant topoisomerase I was utilized to demonstrate that covalent protein-DNA complex accumulation results in oxidative damage. Hydroxyl radicals were detected following mutant topoisomerase induction. The presence of the Fe(2+) chelator 2,2'-dipyridyl and an iscS mutation affecting Fe-S cluster formation protect against topoisomerase I cleavage complex-m...
متن کاملMitochondrial DNA damage associated with lipid peroxidation of the mitochondrial membrane induced by Fe2+-citrate.
Iron imbalance/accumulation has been implicated in oxidative injury associated with many degenerative diseases such as hereditary hemochromatosis, beta-thalassemia, and Friedreich's ataxia. Mitochondria are particularly sensitive to iron-induced oxidative stress - high loads of iron cause extensive lipid peroxidation and membrane permeabilization in isolated mitochondria. Here we detected and c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of microbiology and biotechnology
دوره 24 9 شماره
صفحات -
تاریخ انتشار 2014