Vines -a New Graphical Model for Dependent Random Variables

نویسندگان

  • Tim Bedford
  • Roger M. Cooke
چکیده

A new graphical model, called a vine, for dependent random variables is introduced. Vines generalize the Markov trees often used in modelling high-dimensional distributions. They diier from Markov trees and Bayesian belief nets in that the concept of conditional independence is weakened to allow for various forms of conditional dependence. Vines can be used to specify multivariate distributions in a straightforward way by specifying various marginal distributions and the ways in which these marginals are to be coupled. Such distributions have applications in uncertainty analysis where the objective is to determine the sensitivity of a model output with respect to the uncertainty in unknown parameters. Expert information is frequently elicited to determine some quantitative characteristics of the distribution such as (rank) correlations. We show that it is simple to construct a minimum information vine distribution, given such expert information. Sampling from minimum information distributions with given marginals and (conditional) rank correlations speciied on a vine can be performed almost as fast as independent sampling. A special case of the vine construction allows the construction of a multivariate normal distribution by specifying a set of partial correlations on which there are no restrictions except the obvious one that a correlation lies between ?1 and 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eliciting conditional and unconditional rank correlations from conditional probabilities

Causes of uncertainties may be interrelated and may introduce dependencies. Ignoring these dependencies may lead to large errors. A number of graphical models in probability theory such as dependence trees, vines and (continuous) Bayesian belief nets [Cooke RM. Markov and entropy properties of tree and vine-dependent variables. In: Proceedings of the ASA section on Bayesian statistical science,...

متن کامل

Copulas and Vines (stat08012)

Copulas and vines allow us to model the distribution of multivariate random variables in a flexible way. This article introduces copulas via Sklar’s theorem, explains how pair copula constructions are built by decomposing multivariate copula densities and illustrates vine graphical representations.

متن کامل

A New Trust Model for B2C E-Commerce Based on 3D User Interfaces

Lack of trust is one of the key bottle necks in e-commerce development. Nowadays many advanced technologies are trying to address the trust issues in e-commerce. One among them suggests using suitable user interfaces. This paper investigates the functionality and capabilities of 3D graphical user interfaces in regard to trust building in the customers of next generation of B2C e-commerce websit...

متن کامل

Incorporating Regular Vines in Estimation of Distribution Algorithms

This chapter presents the incorporation and use of regular vines into Estimation of Distribution Algorithms for solving numerical optimization problems. Several kinds of statistical dependencies among continuous variables can be taken into account by using regular vines. This work presents a procedure for selecting the most important dependencies in EDAs by truncating regular vines. Moreover, t...

متن کامل

Official Statistics Data Integration Using Copulas

The aim of this paper is to propose a novel approach to integrate financial information, incorporating the dependence structure among the variables. The approach is based on two types of graphical models: vines and non parametric Bayesian belief nets (NPBBNs). Vines are undirected graphs, representing pair copula constructions, which are used to model the dependence structure of a set of variab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002