Elastin overexpression by cell-based gene therapy preserves matrix and prevents cardiac dilation

نویسندگان

  • Shu-Hong Li
  • Zhuo Sun
  • Lily Guo
  • Mihan Han
  • Michael F G Wood
  • Nirmalya Ghosh
  • I Alex Vitkin
  • Richard D Weisel
  • Ren-Ke Li
چکیده

After a myocardial infarction, thinning and expansion of the fibrotic scar contribute to progressive heart failure. The loss of elastin is a major contributor to adverse extracellular matrix remodelling of the infarcted heart, and restoration of the elastic properties of the infarct region can prevent ventricular dysfunction. We implanted cells genetically modified to overexpress elastin to re-establish the elastic properties of the infarcted myocardium and prevent cardiac failure. A full-length human elastin cDNA was cloned, subcloned into an adenoviral vector and then transduced into rat bone marrow stromal cells (BMSCs). In vitro studies showed that BMSCs expressed the elastin protein, which was deposited into the extracellular matrix. Transduced BMSCs were injected into the infarcted myocardium of adult rats. Control groups received either BMSCs transduced with the green fluorescent protein gene or medium alone. Elastin deposition in the infarcted myocardium was associated with preservation of myocardial tissue structural integrity (by birefringence of polarized light; P < 0.05 versus controls). As a result, infarct scar thickness and diastolic compliance were maintained and infarct expansion was prevented (P < 0.05 versus controls). Over a 9-week period, rats implanted with BMSCs demonstrated better cardiac function than medium controls; however, rats receiving BMSCs overexpressing elastin showed the greatest functional improvement (P < 0.01). Overexpression of elastin in the infarcted heart preserved the elastic structure of the extracellular matrix, which, in turn, preserved diastolic function, prevented ventricular dilation and preserved cardiac function. This cell-based gene therapy provides a new approach to cardiac regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elastin stabilizes an infarct and preserves ventricular function.

BACKGROUND After a myocardial infarction, the injured region becomes fibrotic and the myocardial scar may expand if the ventricular wall lacks elasticity. Cardiac dilatation may precipitate the vicious cycle of progressive heart failure. The present study evaluated the functional benefits of increasing elastin within a myocardial scar using cell based gene therapy. METHODS AND RESULTS A myoca...

متن کامل

Synergistic Effects of NDRG2 Overexpression and Radiotherapy on Cell Death of Human Prostate LNCaP Cells

Background: Radiation therapy is among the most conventional cancer therapeutic modalities with effective local tumor control. However, due to the development of radio-resistance, tumor recurrence and metastasis often occur following radiation therapy. In recent years, combination of radiotherapy and gene therapy has been suggested to overcome this problem. The aim of the current study was to e...

متن کامل

Local overexpression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat model.

Although matrix metalloproteinases (MMPs) are expressed in abundance in arterial aneurysms, their contribution to arterial wall degeneration, dilation, and rupture has not been determined. We investigated MMP function in a rat model of aneurysm associated with arterial dilation, elastin loss, medial invasion by mononuclear inflammatory cells, and MMP upregulation. Rupture was correlated with in...

متن کامل

Overexpression of elastin fragments in infarcted myocardium attenuates scar expansion and heart dysfunction.

Ventricular dilation after myocardial infarction can cause heart failure. Increasing strength and elasticity in the infarct region might prevent ventricular dilation. Because elastin provides strength, extensibility, and resilience to tissues and maintains tissue architecture, we studied the effect of elastin expression in the infarct on scar expansion and heart function. COS-7 cells transfecte...

متن کامل

N-myc downstream regulated gene 2 overexpression reduces matrix metalloproteinase-2 and -9 activities and cell invasion of A549 lung cancer cell line in vitro

Objective(s):N-myc downstream regulated gene 2 (NDRG2) is a candidate gene for tumor suppression. The expression of NDRG2 is down-regulated in several tumors including lung cancer. The aim of this study was to explore the effect of NDRG2 overexpression on invasion, migration, and enzymatic activity of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) in human lung adenocarcinoma A549 cells.  Ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2012