In vivo metabolism of 5'-methylthioadenosine in lemna.
نویسندگان
چکیده
Evidence is presented that Lemna converts 5'-methylthioadenosine (MTA) to methionine. The methylthio moiety and four of the ribose carbons of the nucleoside contribute the methylthio and the four-carbon moieties of methionine. Plants grown in the presence of inhibitors which block methionine biosynthesis convert MTA to methionine at a rate sufficient to sustain normal growth (at least 4.4 nanomoles per colony per doubling with a molar yield of at least 65%). The pathway for conversion is shown to be constitutive in plants grown in standard medium and to function at a rate sufficient to dispose of MTA arising as a result of polyamine synthesis, and to explain the observed rate (1.4 nanomoles per colony per doubling) of preferential recycling of methionine sulfur (Giovanelli, Mudd, Datko 1981 Biochem Biophys Res Commun 100: 831-839). Rapid entry of methionine methyl into S-adenosylmethionine and phosphorylcholine was observed for plants grown in standard medium. Adenine generated during this cycle is efficiently salvaged into ADP and ATP.Conversion of MTA to methionine completes the steps in methionine thiomethyl recycling (Giovanelli, Mudd, Datko 1981 Biochem Biophys Res Commun 100: 831-839) in which the sulfur of methionine is retained while the four-carbon moiety is not. The findings further show that the four-carbon moiety of methionine can be derived via the ribose moiety of MTA in addition to the established route from O-phosphohomoserine via transsulfuration. Previous observations (Giovanelli, Mudd, Datko 1980 Biochemistry of Plants pp 453-505) can now be interpreted as establishing that exogenous methionine down-regulates its own net synthesis via the transsulfuration pathway.
منابع مشابه
Biochemical genetic analysis of the role of methylthioadenosine phosphorylase in a murine lymphoid cell line.
The enzyme methylthioadenosine phosphorylase functions in both purine and polyamine metabolism is dividing mammalian cells. To determine the effects of the loss of this enzyme on cell growth and metabolism, we selected two methylthioadenosine phosphorylase-deficient mutant clones of the transplantable murine T lymphoma cell line R1.1. The first had 3.5% of wild type methylthioadenosine phosphor...
متن کاملDeficiency of methylthioadenosine phosphorylase in human leukemic cells in vivo.
Cells from 20 patients with leukemia and 9 with solid tumors were assayed for the enzyme methylthioadenosine phosphorylase, which function in both purine and polyamine metabolism in rapidly dividing cells. As determined by autoradiography of viable cells, and by direct enzymatic analysis, samples from one individual with pre-T-cell acute lymphoblastic leukemia and one with common acute lymphobl...
متن کاملUptake and utilization of 5'-methylthioadenosine by cultured baby-hamster kidney cells.
5'-Methylthioadenosine was taken up and immediately metabolized further by cultured baby-hamster kidney cells during the exponential phase of growth. The adenine moiety supplied the purine-nucleotide pool via the salvage pathway and was efficiently incorporated into nucleic acids. Catabolites of methylthioadenosine excreted by the cells included adenine, purinic compounds and metabolites of the...
متن کاملMicrobial pathway for anaerobic 5′-methylthioadenosine metabolism coupled to ethylene formation
Numerous cellular processes involving S-adenosyl-l-methionine result in the formation of the toxic by-product, 5'-methylthioadenosine (MTA). To prevent inhibitory MTA accumulation and retain biologically available sulfur, most organisms possess the "universal" methionine salvage pathway (MSP). However, the universal MSP is inherently aerobic due to a requirement of molecular oxygen for one of t...
متن کاملEffect of analogues of 5'-methylthioadenosine on cellular metabolism. Inactivation of S-adenosylhomocysteine hydrolase by 5'-isobutylthioadenosine.
The effects of a number of nucleosides related to 5'-methylthioadenosine on the activities of S-adenosylhomocysteine hydrolase, 5'-methylthioadenosine phosphorylase, spermidine synthase and spermine synthase were investigated. Both 5'-methylthioadenosine and 5'-isobutylthioadenosine gave rise to an enzyme-activated irreversible inhibition of S-adenosylhomocysteine hydrolase, but 5'-methylthiotu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 71 2 شماره
صفحات -
تاریخ انتشار 1983