Photo‐Cross‐Linked Dual‐Responsive Hollow Capsules Mimicking Cell Membrane for Controllable Cargo Post‐Encapsulation and Release

نویسندگان

  • Xiaoling Liu
  • Dietmar Appelhans
  • Qiang Wei
  • Brigitte Voit
چکیده

Multifunctional and responsive hollow capsules are ideal candidates to establish highly sophisticated compartments mimicking cell membranes for controllable bio-inspired functions. For this purpose pH and temperature dual-responsive and photo-cross-linked hollow capsules, based on silica-templated layer-by-layer approach by using poly(N-isopropyl acrylamide)-block-polymethacrylate) and polyallylamine, have been prepared to use them for the subsequent and easily available post-encapsulation process of protein-like macromolecules at room temperature and pH 7.4 and their controllable release triggered by stimuli. The uptake and release properties of the hollow capsules for cargos are highly affected by changes in the external stimuli temperature (25, 37, or 45 °C) and internal stimuli pH of the phosphate-containing buffer solution (5.5 or 7.4), by the degree of photo-cross-linking, and the size of cargo. The photo-cross-linked and dual stimuli-responsive hollow capsules with different membrane permeability can be considered as attractive material for mimicking cell functions triggered by controllable uptake and release of different up to 11 nm sized biomolecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing LbL Capsules for Drug Loading and Release

Layer-by-layer (LbL) [1] assembly is a powerful tool for engineering microparticulate structures. On the one hand it allows one to tailor the surface chemistry of microparticles, rendering them responsive to physicochemical stimuli such as pH, ionic strength, light, and so on, to allow bio-specific recognition or just to prevent adsorption of unwanted species [2]. On the other hand, using micro...

متن کامل

Photo and Redox Dual Responsive Reversibly Cross-Linked Nanocarrier for Efficient Tumor-Targeted Drug Delivery

To develop a feasible and efficient nanocarrier for potential clinical application, a series of photo and redox dual responsive reversibly cross-linked micelles have been developed for the targeted anticancer drug delivery. The nanocarrier can be cross-linked efficiently via a clean, efficient, and controllable coumarin photodimerization within the nanocarrier, which simplify the formulation pr...

متن کامل

Microfluidic fabrication of polyethylene glycol microgel capsules with tailored properties for the delivery of biomolecules.

Microfluidic encapsulation platforms have great potential not only in pharmaceutical applications but also in the consumer products industry. Droplet-based microfluidics is increasingly used for the production of monodisperse polymer microcapsules for biomedical applications. In this work, a microfluidic technique is developed for the fabrication of monodisperse double emulsion droplets, where ...

متن کامل

Phototriggered cargo release from virus-like assemblies.

There has been tremendous progress towards the development of responsive polymers that are programmed to respond to an external stimulus such as light, pH and temperature. The unique combination of molecular packaging followed by slow, controlled release of molecular cargo is of particular importance for self-healing materials and the controlled release of drugs. While much focus and progress r...

متن کامل

Light-Responsive Polymer Micro- and Nano-Capsules

A significant amount of academic and industrial research efforts are devoted to the encapsulation of active substances within microor nanocarriers. The ultimate goal of core–shell systems is the protection of the encapsulated substance from the environment, and its controlled and targeted release. This can be accomplished by employing “stimuli-responsive” materials as constituents of the capsul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017