Tagging muscle cell lineages in development and tail regeneration using Cre recombinase in transgenic Xenopus.
نویسندگان
چکیده
The use of Cre and FLP recombinases to analyze embryogenesis and organogenesis in Xenopus has not been applied so far. We report on the generation of transgenic Xenopus animals containing a Cre-activated reporter gene cassette expressing blue fluorescent protein that can be switched over to yellow fluorescent protein expression upon Cre-mediated recombination. By injecting Cre mRNA into the two-cell stage embryo we show that Cre-mediated activation of the yellow fluorescent protein gene occurs. In addition, we observe upon injection an extinction of blue fluorescence in animals expressing the transgene and the induction of blue fluorescence in larvae containing a silent reporter gene. By crossing the reporter strains with animals expressing a muscle-specific Cre transgene we obtained an efficient and specific recombination of the reporter gene that leads to yellow fluorescence in myotomes and myofibrils of the developing larvae. Removal of the tail tips of these larvae allows the continuous recording of muscle cell differentiation in the regenerating tail. We detect a dramatic increase in transgene expression at the site of tissue removal in the tail stump. In the regenerated tail, yellow fluorescence is restricted to the myotomes thus excluding transdifferentiation of muscle cells.
منابع مشابه
Cell lineage tracing during Xenopus tail regeneration.
The tail of the Xenopus tadpole will regenerate following amputation, and all three of the main axial structures - the spinal cord, the notochord and the segmented myotomes - are found in the regenerated tail. We have investigated the cellular origin of each of these three tissue types during regeneration. We produced Xenopus laevis embryos transgenic for the CMV (Simian Cytomegalovirus) promot...
متن کاملDerivation of lung mesenchymal lineages from the fetal mesothelium requires hedgehog signaling for mesothelial cell entry.
Recent studies have shown that mesothelial progenitors contribute to mesenchymal lineages of developing organs. To what extent the overlying mesothelium contributes to lung development remains unknown. To rigorously address this question, we employed Wt1(CreERT2/+) mice for high-fidelity lineage tracing after confirming that Cre recombinase was mesothelial specific and faithfully recapitulated ...
متن کاملSelectable Marker Gene Removal and Expression of Transgene by Inducible Promoter Containing FFDD Cis-Acting elements in Transgenic plants
Abstract Background: Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production Background: Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production without using SMG is not economically feasible. However, SMGs are non-essential once an intact transgenic plant has been established. Eli...
متن کاملZ/AP, a double reporter for cre-mediated recombination.
The Cre/loxP site-specific recombination system combined with embryonic stem cell-mediated technologies has greatly expanded our capability to address normal and disease development in mammals using genetic approaches. The success of this emerging technology hinges on the production of Cre-expressing transgenic lines that provide cell type-, tissue-, or developmental stage-specific recombinatio...
متن کاملImproved cre reporter transgenic Xenopus.
We have produced and characterized improved transgenic reporter lines for detection of Cre recombinase activity during Xenopus development. Improvements include choice of fluorophores, which make these Cre reporter lines generally suitable for lineage tracing studies. We also include data for several new parameters affecting survival and transgenesis efficiency using the recently developed mega...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 31 8 شماره
صفحات -
تاریخ انتشار 2003