Preclinical study of a Kv11.1 potassium channel activator as antineoplastic approach for breast cancer
نویسندگان
چکیده
Potassium ion (K+) channels have been recently found to play a critical role in cancer biology. Despite that pharmacologic manipulation of ion channels is recognized as an important therapeutic approach, very little is known about the effects of targeting of K+ channels in cancer. In this study, we demonstrate that use of the Kv11.1 K+ channel activator NS1643 inhibits tumor growth in an in vivo model of breast cancer. Tumors exposed to NS1643 had reduced levels of proliferation markers, high expression levels of senescence markers, increased production of ROS and DNA damage compared to tumors of untreated mice. Importantly, mice treated with NS1643 did not exhibit significant cardiac dysfunction. In conclusion, pharmacological stimulation of Kv11.1 activity produced arrested TNBC-derived tumor growth by generating DNA damage and senescence without significant side effects. We propose that use of Kv11.1 channels activators could be considered as a possible pharmacological strategy against breast tumors.
منابع مشابه
hERG1/Kv11.1 activation stimulates transcription of p21waf/cip in breast cancer cells via a calcineurin-dependent mechanism
The function of Kv11.1 is emerging in breast cancer biology, as a growing body of evidence indicates that the hERG1/Kv11.1 potassium channel is aberrantly expressed in several cancer types including breast cancers.The biological effects of Kv11.1 channel blockers and their associated side effects are very well known but the potential use of Kv11.1 activators as an anticancer strategy are still ...
متن کاملKinetics of drug interaction with the Kv11.1 potassium channel.
The Kv11.1 potassium channel is the molecular target for the majority of drugs implicated in acquired long QT syndrome, the most common cause of drug-induced sudden cardiac death, and a common reason for drug restriction or withdrawal from the market. While the IC50 for block of Kv11.1 is commonly used to estimate the risk of acquired long QT syndrome, this approach is crude, and it is widely a...
متن کاملAstemizole Synergizes Calcitriol Antiproliferative Activity by Inhibiting CYP24A1 and Upregulating VDR: A Novel Approach for Breast Cancer Therapy
BACKGROUND Calcitriol antiproliferative effects include inhibition of the oncogenic ether-à-go-go-1 potassium channel (Eag1) expression, which is necessary for cell cycle progression and tumorigenesis. Astemizole, a new promising antineoplastic drug, targets Eag1 by blocking ion currents. Herein, we characterized the interaction between calcitriol and astemizole as well as their conjoint antipr...
متن کاملTemperature Effects on Kinetics of KV11.1 Drug Block Have Important Consequences for In Silico Proarrhythmic Risk Prediction.
Drug block of voltage-gated potassium channel subtype 11.1 human ether-a-go-go related gene (Kv11.1) (hERG) channels, encoded by the KCNH2 gene, is associated with reduced repolarization of the cardiac action potential and is the predominant cause of acquired long QT syndrome that can lead to fatal cardiac arrhythmias. Current safety guidelines require that potency of KV11.1 block is assessed i...
متن کاملSchizophrenia-Associated hERG channel Kv11.1-3.1 Exhibits a Unique Trafficking Deficit that is Rescued Through Proteasome Inhibition for High Throughput Screening
The primate-specific brain voltage-gated potassium channel isoform Kv11.1-3.1 has been identified as a novel therapeutic target for the treatment of schizophrenia. While this ether-a-go-go related K(+)channel has shown clinical relevance, drug discovery efforts have been hampered due to low and inconsistent activity in cell-based assays. This poor activity is hypothesized to result from poor tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2018