Nitric oxide and mechanisms of redox signaling.
نویسندگان
چکیده
Regulation of signal transduction and gene expression is a multifaceted process involving ligands, receptors, and second messengers that trigger cascades of protein kinases and phosphatases and propagate the signal to the nucleus to alter gene expression. Reduction-oxidation (redox)-based regulatory pathways provide additional means of gating signal transduction, and redox-based regulation of gene expression emerges as a fundamental regulatory mechanism in living cells. The cellular redox state is reflected by the degree of oxidation (or reduction) of various redox-active molecules at a specific cellular location at any given time point. The ratio of oxidized/reduced redox species determines the redox potential, which may vary dramatically in time and in different compartments of a cell and consequently alter in a temporally and spatially dynamic process the activity of signaling enzymes that carry redox-active functional groups. Generation and action of free radicals such as nitric oxide, superoxide, and H(2)O(2) that paradigmatically highlight the impact of redox regulation on cellular signal transduction and gene expression are discussed with a special focus on the renal glomerular response to injury.
منابع مشابه
Redox and nitric oxide-mediated regulation of sensory neuron ion channel function.
SIGNIFICANCE Reactive oxygen and nitrogen species (ROS and RNS, respectively) can intimately control neuronal excitability and synaptic strength by regulating the function of many ion channels. In peripheral sensory neurons, such regulation contributes towards the control of somatosensory processing; therefore, understanding the mechanisms of such regulation is necessary for the development of ...
متن کاملRedox Regulation of Inflammatory Processes Is Enzymatically Controlled
Redox regulation depends on the enzymatically controlled production and decay of redox active molecules. NADPH oxidases, superoxide dismutases, nitric oxide synthases, and others produce the redox active molecules superoxide, hydrogen peroxide, nitric oxide, and hydrogen sulfide. These react with target proteins inducing spatiotemporal modifications of cysteine residues within different signali...
متن کاملIs methemoglobin an inert bystander, biomarker or a mediator of oxidative stress—The example of anemia?☆
Acute anemia increases the risk for perioperative morbidity and mortality in critically ill patients who experience blood loss and fluid resuscitation (hemodilution). Animal models of acute anemia suggest that neuronal nitric oxide synthase (nNOS)-derived nitric oxide (NO) is adaptive and protects against anemia-induced mortality. During acute anemia, we have observed a small but consistent inc...
متن کاملExploring the role and inter-relationship among nitric oxide, opioids, and KATP channels in the signaling pathway underlying remote ischemic preconditioning induced cardioprotection in rats
Objective(s): This study explored the inter-relationship among nitric oxide, opioids, and KATP channels in the signaling pathway underlying remote ischemic preconditioning (RIPC) conferred cardioprotection. Materials and Methods: Blood pressure cuff was placed around the hind limb of the animal and RIPC was performed by 4 cycles of infla...
متن کاملS-nitrosation: current concepts and new developments.
The S-nitrosation (also referred to as S-nitrosylation) of cysteine residues is an important post-translational protein modification that regulates protein function and cell signaling. The original research articles and reviews in this Forum cover important concepts in protein S-nitrosation and identify key developments and opportunities for progress in this area. Defining the mechanisms by whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 14 8 Suppl 3 شماره
صفحات -
تاریخ انتشار 2003