Analysis of Remaining Uncertainties and Exponents under Various Conditional Rényi Entropies

نویسندگان

  • Vincent Yan Fu Tan
  • Masahito Hayashi
چکیده

In this paper, we analyze the asymptotics of the normalized remaining uncertainty of a source when a compressed or hashed version of it and correlated side-information is observed. For this system, commonly known as Slepian-Wolf source coding, we establish the optimal (minimum) rate of compression of the source to ensure that the remaining uncertainties vanish. We also study the exponential rate of decay of the remaining uncertainty to zero when the rate is above the optimal rate of compression. In our study, we consider various classes of random universal hash functions. Instead of measuring remaining uncertainties using traditional Shannon information measures, we do so using two forms of the conditional Rényi entropy. Among other techniques, we employ new one-shot bounds and the moments of type class enumerator method for these evaluations. We show that these asymptotic results are generalizations of the strong converse exponent and the error exponent of the Slepian-Wolf problem under maximum a posteriori (MAP) decoding. Index Terms Remaining uncertainty, Conditional Rényi entropies, Rényi divergence, Error exponent, Strong converse exponent, SlepianWolf coding, Universal hash functions, Information-theoretic security, Moments of type class enumerator method

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Preferred Definition of Conditional Rényi Entropy

The Rényi entropy is a generalization of Shannon entropy to a one-parameter family of entropies. Tsallis entropy too is a generalization of Shannon entropy. The measure for Tsallis entropy is non-logarithmic. After the introduction of Shannon entropy , the conditional Shannon entropy was derived and its properties became known. Also, for Tsallis entropy, the conditional entropy was introduced a...

متن کامل

Equivocations, Exponents and Second-Order Coding Rates under Various Rényi Information Measures

In this paper, we evaluate the asymptotics of equivocations, their exponents as well as their second-order coding rates under various Rényi information measures. Specifically, we consider the effect of applying a hash function on a source and we quantify the level of non-uniformity and dependence of the compressed source from another correlated source when the number of copies of the sources is...

متن کامل

A duality relation connecting different quantum generalizations of the conditional Rényi entropy

Recently a new quantum generalization of the Rényi divergence and the corresponding conditional Rényi entropies was proposed. Here we report on a surprising relation between conditional Rényi entropies based on this new generalization and conditional Rényi entropies based on the quantum relative Rényi entropy that was used in previous literature. This generalizes the well-known duality relation...

متن کامل

Information Theoretic Security for Encryption Based on Conditional Rényi Entropies

In this paper, information theoretic cryptography is discussed based on conditional Rényi entropies. Our discussion focuses not only on cryptography but also on the definitions of conditional Rényi entropies and the related information theoretic inequalities. First, we revisit conditional Rényi entropies, and clarify what kind of properties are required and actually satisfied. Then, we propose ...

متن کامل

Revisiting Conditional Rényi Entropies and Generalizing Shannon’s Bounds in Information Theoretically Secure Encryption

Information theoretic cryptography is discussed based on conditional Rényi entropies. Our discussion focuses not only on cryptography but also on the definitions of conditional Rényi entropies and the related information theoretic inequalities. First, we revisit conditional Rényi entropies, and clarify what kind of properties are required and actually satisfied. Then, we propose security criter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1605.09551  شماره 

صفحات  -

تاریخ انتشار 2016