Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu2ZnSn(S,Se)4 solar cells.
نویسندگان
چکیده
Electrostatic Spray-Assisted Vapor Deposition (ESAVD) is a non-vacuum and cost-effective method to deposit metal oxide, various sulphide and chalcogenide at large scale. In this work, ESAVD was used to deposit Cu2ZnSn(S1-xSex)4 (CZTSSe) absorber. Different alkali metals like Na, Li and Rb were incorporated in CZTSSe compounds to further improve the photovoltaic performances of related devices. In addition, to the best of our knowledge, no experimental study has been carried out to test the effect of Li and Rb incorporation in CZTSSe solar cells. X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and glow discharge spectroscopy have been used to characterize the phase purity, morphology and composition of as-deposited CZTSSe thin films. Photovoltaic properties of the resulting devices were determined by completing the solar cells as follows: Mo/CZTSSe/CdS/i-ZnO/Al:ZnO/Ni/Al. The results showed that Li, Na and Rb incorporation can increase power conversion efficiency of CZTS devices up to 5.5%. The introduction of a thiourea treatment, has improved the quality of the absorber(|)buffer interface, pushed the device efficiency up to 6.3% which is at the moment the best reported result for ESAVD deposited CZTSSe solar cells.
منابع مشابه
A Route to Phase Controllable Cu2ZnSn(S1−xSex)4 Nanocrystals with Tunable Energy Bands
Cu2ZnSn(S(1-x)Se(x))4 nanocrystals are an emerging family of functional materials with huge potential of industrial applications, however, it is an extremely challenging task to synthesize Cu2ZnSn(S(1-x)Se(x))4 nanocrystals with both tunable energy band and phase purity. Here we show that a green and economic route could be designed for the synthesis of Cu2ZnSn(S(1-x)Se(x))4 nanocrystals with b...
متن کاملInkjet‐Printed Cu2ZnSn(S, Se)4 Solar Cells
Cu2ZnSn(S, Se)4-based solar cells with total area (0.5 cm2) power conversion efficiency of 6.4% are demonstrated from thin film absorbers processed by inkjet printing technology of Cu-Zn-Sn-S precursor ink followed by selenization. The device performance is limited by the low fill factor, which is due to the high series resistance.
متن کاملRational defect passivation of Cu2ZnSn(S,Se)4 photovoltaics with solution-processed Cu2ZnSnS4:Na nanocrystals.
An effective defect passivation route has been demonstrated in the rapidly growing Cu2ZnSn(S,Se)4 (CZTSSe) solar cell device system by using Cu2ZnSnS4:Na (CZTS:Na) nanocrystals precursors. CZTS:Na nanocrystals are obtained by sequentially preparing CZTS nanocrystals and surface decorating of Na species, while retaining the kesterite CZTS phase. The exclusive surface presence of amorphous Na spe...
متن کاملLithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S,Se)4 and increases photovoltaic efficiency.
Passive grain boundaries (GBs) are essential for polycrystalline solar cells to reach high efficiency. However, the GBs in Cu2ZnSn(S,Se)4 have less favorable defect chemistry compared to CuInGaSe2. Here, using scanning probe microscopy we show that lithium doping of Cu2ZnSn(S,Se)4 changes the polarity of the electric field at the GB such that minority carrier electrons are repelled from the GB....
متن کاملA series of new alkali metal indium iodates with isolated or extended anions.
Systematic explorations of new phases in the A(I)-In(III)-I(V)-O system by hydrothermal reactions led to five new compounds, namely, AIn(IO(3))(4) (A = Li, Na), Rb(3)In(IO(3))(6) and A(2)HIn(IO(3))(6) (A = Rb, Cs). The structure of AIn(IO(3))(4) (A = Li, Na) contains one-dimensional [In(IO(3))(4)](-) chains separated by Li(+) or Na(+) cations. In both compounds, each In(3+) cation is octahedral...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Scientific reports
دوره 6 شماره
صفحات -
تاریخ انتشار 2016