ERα inhibits epithelial-mesenchymal transition by suppressing Bmi1 in breast cancer
نویسندگان
چکیده
In human breast cancer, estrogen receptor-α (ERα) suppresses epithelial-mesenchymal transition (EMT) and stemness, two crucial parameters for tumor metastasis; however, the underlying mechanism by which ERα regulates these two processes remains largely unknown. Bmi1, the polycomb group protein B lymphoma Mo-MLV insertion region 1 homolog, regulates EMT transition, maintains the self-renewal capacity of stem cells, and is frequently overexpressed in human cancers. In the present study, ERα upregulated the expression of the epithelial marker, E-cadherin, in breast cancer cells through the transcriptional down-regulation of Bmi1. Furthermore, ERα overexpression suppressed the migration, invasion, and EMT of breast cancer cells. Notably, overexpression of ERα significantly decreased the CD44high/CD24low cell population and inhibited the capacity for mammosphere formation in ERα-negative breast cancer cells. In addition, overexpression of Bmi1 attenuated the ERα-mediated suppression of EMT and cell stemness. Immunohistochemistry revealed an inverse association of ERα and Bmi1 expression in human breast cancer tissue. Taken together, our findings suggest that ERα inhibits EMT and stemness through the downregulation of Bmi1.
منابع مشابه
Analysis of epithelial mesenchymal transition markers in breast cancer cells in response to stromal cell-derived factor 1
Introduction: Metastasis is the main cause of cancer death; however, the underlying mechanisms of metastasis are largely unknown. The chemokine of stromal cell-derived factor 1 (SDF1) and the process of epithelial mesenchymal transition (EMT), both have been declared as important factors to promote cancer metastasis; however, Conspicuously, the relation between them has not been recognized well...
متن کاملCrosstalk between Tumor Cells and Immune System Leads to Epithelial-Mesenchymal Transition Induction and Breast Cancer Progression
Herein, we review the current findings of how a variety of accessory cells could participate in shaping the tumor microenvironment and supporting the mechanisms by which cancer cells undertake the epithelial-mesenchymal transition (EMT). EMT, a complex of phenotypic changes, promotes cancer cell invasion and creates resistance to chemotherapies. Among the accessory cells present in the EMT, imm...
متن کاملERα, microRNAs, and the epithelial-mesenchymal transition in breast cancer.
The most common form of breast cancer, luminal A, is estrogen receptor α (ERα)-positive and epithelial, but nevertheless can metastasize. The process of epithelial-mesenchymal transition (EMT) is probably the first step in the metastasis of epithelial cancers. We discuss the characteristics of EMT, including factors that induce EMT, and the relationship of EMT to cancer stem cells (CSCs). Estro...
متن کاملNotch3 Maintains Luminal Phenotype and Suppresses Tumorigenesis and Metastasis of Breast Cancer via Trans-Activating Estrogen Receptor-α
The luminal A phenotype is the most common breast cancer subtype and is characterized by estrogen receptor α expression (ERα). Identification of the key regulator that governs the luminal phenotype of breast cancer will clarify the pathogenic mechanism and provide novel therapeutic strategies for this subtype of cancer. ERα signaling pathway sustains the epithelial phenotype and inhibits the ep...
متن کاملMelatonin Represses Metastasis in Her2-Postive Human Breast Cancer Cells by Suppressing RSK2 Expression.
The importance of the circadian/melatonin signal in suppressing the metastatic progression of breast and other cancers has been reported by numerous laboratories including our own. Currently, the mechanisms underlying the antimetastatic actions of melatonin have not been well established. In the present study, the antimetastatic actions of melatonin were evaluated and compared on the ERα-negati...
متن کامل