A doubly optimal ellipse fit
نویسندگان
چکیده
We study the problem of fitting ellipses to observed points in the context of Errors-In-Variables regression analysis. The accuracy of fitting methods is characterized by their variances and biases. The variance has a theoretical lower bound (the KCR bound), and many practical fits attend it, so they are optimal in this sense. There is no lower bound on the bias, though, and in fact our higher order error analysis (developed just recently) shows that it can be eliminated, to the leading order. Kanatani and Rangarajan recently constructed an algebraic ellipse fit that has no bias, but its variance exceeds the KCR bound; so their method is optimal only relative to the bias. We present here a novel ellipse fit that enjoys both optimal features: the theoretically minimal variance and zero bias (both to the leading order). Our numerical tests confirm the superiority of the proposed fit over the existing fits.
منابع مشابه
Direct Ellipse Fitting and Measuring Based on Shape Boundaries
Measuring ellipticity is an important area of computer vision systems. Most existing ellipticity measures are area based and cannot be easily applied to point sets such as extracted edges from real world images. We are interested in ellipse fitting and ellipticity measures which rely exclusively on shape boundary points which are practical in computer vision. They should also be calculated very...
متن کاملPerformance Comparison of Three Algorithms for Two-channel Sinewave Parameter Estimation: Seven Parameter Sine Fit, Ellipse Fit, Spectral Sinc Fit
− The comparison of three different algorithms for the estimation of parameters of two sine signals with common frequency is presented. The algorithms are the ellipse fit, the seven parameter sine fit and the spectral sinc fit. The comparison includes signal to noise ratio analysis, amplitude analysis and phase difference analysis.
متن کاملThe local geometry of testing in ellipses: Tight control via localized Kolomogorov widths
We study the local geometry of testing a mean vector within a high-dimensional ellipse against a compound alternative. Given samples of a Gaussian random vector, the goal is to distinguish whether the mean is equal to a known vector within an ellipse, or equal to some other unknown vector in the ellipse. Such ellipse testing problems lie at the heart of several applications, including non-param...
متن کاملBlocking Adult Images Based on Statistical Skin Detection
This work is aimed at the detection of adult images that appear in Internet. Skin detection is of the paramount importance in the detection of adult images. We build a maximum entropy model for this task. This model, called the First Order Model in this paper, is subject to constraints on the color gradients of neighboring pixels. Parameter estimation as well as optimization cannot be tackled w...
متن کاملUsing Neural Networks and Genetic Algorithms for Modelling and Multi-objective Optimal Heat Exchange through a Tube Bank
In this study, by using a multi-objective optimization technique, the optimal design points of forced convective heat transfer in tubular arrangements were predicted upon the size, pitch and geometric configurations of a tube bank. In this way, the main concern of the study is focused on calculating the most favorable geometric characters which may gain to a maximum heat exchange as well as a m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 56 شماره
صفحات -
تاریخ انتشار 2012