Limit state function identification using Support Vector Machines for discontinuous responses and disjoint failure domains
نویسندگان
چکیده
This article presents a method for the explicit construction of limit state functions using Support Vector Machines (SVM). Specifically, the approach aims at handling the difficulties associated with the reliability assessment of problems exhibiting discontinuous responses and disjoint failure domains. The SVM-based explicit construction of limit state functions allows for an easy calculation of a probability of failure and enables the association of a specific system behavior with a region of the design space. The explicit limit state function can then be used within a reliabilitybased design optimization (RBDO) problem. Two problems are presented to demonstrate the successful application of the developed method for explicit construction of limit state function and reliability-based optimum design. c © 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
Face Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملIdentification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines
In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...
متن کاملEstimation of Probability of Failure with Dependent Variables Using Copulas and Support Vector Machines
This paper presents an approach to estimate probabilities of failure in the case of dependent random variables. The approach is based on copulas and support vector machines (SVMs). A copula is used to generate dependent Monte Carlo samples and an SVM is used to construct the explicit boundary of the failure domain. It is shown that this construction of the failure boundary cannot be made in the...
متن کاملMining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM
Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...
متن کاملReliability Assessment with Correlated Variables using Support Vector Machines
This paper presents an approach to estimate probabilities of failure in cases where the random variables are correlated. An explicit limit state function is constructed in the uncorrelated standard normal space using the Nataf transformation and a support vector machine (SVM). The method of explicitly constructing the limit state function is referred to as explicit design space decomposition (E...
متن کامل