Robust Guided Image Filtering
نویسندگان
چکیده
The process of using one image to guide the filtering process of another one is called Guided Image Filtering (GIF). The main challenge of GIF is the structure inconsistency between the guidance image and the target image. Besides, noise in the target image is also a challenging issue especially when it is heavy. In this paper, we propose a general framework for Robust Guided Image Filtering (RGIF), which contains a data term and a smoothness term, to solve the two issues mentioned above. The data term makes our model simultaneously denoise the target image and perform GIF which is robust against the heavy noise. The smoothness term is able to make use of the property of both the guidance image and the target image which is robust against the structure inconsistency. While the resulting model is highly non-convex, it can be solved through the proposed Iteratively Re-weighted Least Squares (IRLS) in an efficient manner. For challenging applications such as guided depth map upsampling, we further develop a data-driven parameter optimization scheme to properly determine the parameter in our model. This optimization scheme can help to preserve small structures and sharp depth edges even for a large upsampling factor (8× for example). Moreover, the specially designed structure of the data term and the smoothness term makes our model perform well in edge-preserving smoothing for single-image tasks (i.e., the guidance image is the target image itself). It performs well in several challenging applications in avoiding halos, gradient reversals and properly preserving edges with noise/texture being well smoothed. Through extensive experimental results, we show that the proposed RGIF can have promising performance in many applications such as guided depth map upsampling, flash/no flash filtering, detail enhancement, HDR tone mapping, structure smoothing and clip-art JPEG compression artifact removal. This paper is an extension of our previous work [1], [2].
منابع مشابه
A Robust Digital Image Watermarking Scheme Based on DWT
In this paper a wavelet-based logo watermarking scheme is presented. The logo watermark is embedded into all sub-blocks of the LLn sub-band of the transformed host image, using quantization technique. Extracted logos from all sub-blocks are merged to make the extracted watermark from distorted watermarked image. Knowing the quantization step-size, dimensions of logo and the level of wavelet tra...
متن کاملA Robust Digital Image Watermarking Scheme Based on DWT
In this paper a wavelet-based logo watermarking scheme is presented. The logo watermark is embedded into all sub-blocks of the LLn sub-band of the transformed host image, using quantization technique. Extracted logos from all sub-blocks are merged to make the extracted watermark from distorted watermarked image. Knowing the quantization step-size, dimensions of logo and the level of wavelet tra...
متن کاملGuided Image Super-Resolution: A New Technique for Photogeometric Super-Resolution in Hybrid 3-D Range Imaging
In this paper, we augment multi-frame super-resolution with the concept of guided filtering for simultaneous upsampling of 3-D range data and complementary photometric information in hybrid range imaging. Our guided super-resolution algorithm is formulated as joint maximum a-posteriori estimation to reconstruct high-resolution range and photometric data. In order to exploit local correlations b...
متن کاملIterative guided image fusion
We propose a multi-scale image fusion scheme based on guided filtering. Guided filtering can effectively reduce noise while preserving detail boundaries. When applied in an iterative mode, guided filtering selectively eliminates small scale details while restoring larger scale edges. The proposed multi-scale image fusion scheme achieves spatial consistency by using guided filtering both at the ...
متن کاملChange Detection via Selective Guided Contrasting Filters
Change detection scheme based on guided contrasting was previously proposed. Guided contrasting filter takes two images (test and sample) as input and forms the output as filtered version of test image. Such filter preserves the similar details and smooths the nonsimilar details of test image with respect to sample image. Due to this the difference between test image and its filtered version (d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1703.09379 شماره
صفحات -
تاریخ انتشار 2017