Internal Models as Echo State Networks

نویسندگان

  • Rikke Amilde Løvlid
  • Pinar Özturk
  • Pauline Haddow
چکیده

As robots are becoming more and more complex, with higher degrees-of-freedom, lighter limbs, and springy joints, it becomes harder to control their movements. New approaches, inspired from neuroscience, are attracting increased attention among computer scientists dealing with motor control. The focus in this thesis is on how robots can learn to control their limbs by learning how their bodies work, i.e., by learning internal models of their motor apparatus. Inspiration from cerebellar research combined with concepts from traditional control theory has been used as a basis. The research in the thesis is twofold. First, we investigate how internal models can be used to solve different control problems. In particular, we consider how to handle delays in the sensory-motor-loop and how to realize bimanual coordination. Second, we study how the internal models can be represented and learned. This includes how to choose movements to learn from in order to learn as much of the internal model as possible and how to actually learn the training movement. A simple simulator is used in the experiments and the simulator’s internal models were implemented as echo state networks (ESNs), a relatively new and promising type of recurrent neural networks. The simulator learns internal modes of his motor apparatus by imitating human motion. Human motion data was recorded and the task of the simulator’s control system is to generate motor commands that result in the simulator replicating the recorded movement. From the experiments we conclude that using ESNs for representing and learning internal models looks promising. With an ESN we are able to generalize to imitating novel movements, and we demonstrate that it is able to learn various bimanual coordination patterns. However, training ESNs is challenging and a major contribution from this thesis is a novel training method that works particularly well in our application. The thesis also contributes to how different internal models can be used and trained together.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reservoir Computing for Sensory Prediction and Classification in Adaptive Agents

Artificial neural networks are an in silico laboratory for studying the dynamics of the brain. In recurrent networks, the units’ activations are recurrently fed back into the network. Thereby complex network dynamics emerge that extend over longer time scales than the individual units’ activation time constants. The recurrent echo-state networks with their fixed connection weights acquire an in...

متن کامل

Randomness and isometries in echo state networks and compressed sensing

Although largely different concepts, echo state networks and compressed sensing models both rely on collections of random weights; as the reservoir dynamics for echo state networks, and the sensing coefficients in compressed sensing. Several methods for generating the random matrices and metrics to indicate desirable performance are well-studied in compressed sensing, but less so for echo state...

متن کامل

Echo State Property Linked to an Input: Exploring a Fundamental Characteristic of Recurrent Neural Networks

The echo state property is a key for the design and training of recurrent neural networks within the paradigm of reservoir computing. In intuitive terms, this is a passivity condition: a network having this property, when driven by an input signal, will become entrained by the input and develop an internal response signal. This excited internal dynamics can be seen as a high-dimensional, nonlin...

متن کامل

Gait Analysis of Autistic Children with Echo State Networks

This work addresses the problem of classification of multi-modal time-dependent signals, namely the gait motion of autistic and normal children, using the reservoir-based paradigm of Echo-State Networks. Introduction. Many studies suggest that human movements are controlled and organized not as a reaction but as a goal driven action, and that this is already noticeable in newborn children [1, 2...

متن کامل

An Empirical Study of the L2-Boost technique with Echo State Networks

A particular case of Recurrent Neural Network (RNN) was introduced at the beginning of the 2000s under the name of Echo State Networks (ESNs). The ESN model overcomes the limitations during the training of the RNNs while introducing no significant disadvantages. Although the model presents some well-identified drawbacks when the parameters are not well initialized. The performance of an ESN is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013