Membrane-disruptive abilities of beta-hairpin antimicrobial peptides correlate with conformation and activity: a 31P and 1H NMR study.
نویسندگان
چکیده
The membrane interaction and solution conformation of two mutants of the beta-hairpin antimicrobial peptide, protegrin-1 (PG-1), are investigated to understand the structural determinants of antimicrobial potency. One mutant, [A(6,8,13,15)] PG-1, does not have the two disulfide bonds in wild-type PG-1, while the other, [Delta(4,18) G10] PG-1, has only half the number of cationic residues. 31P solid-state NMR lineshapes of uniaxially aligned membranes indicate that the membrane disorder induced by the three peptides decreases in the order of PG-1 > [Delta(4,18) G10] PG-1>>[A(6,8,13,15)] PG-1. Solution NMR studies of the two mutant peptides indicate that [Delta(4,18) G10] PG-1 preserves the beta-hairpin fold of the wild-type peptide while [A(6,8,13,15)] PG-1 adopts a random coil conformation. These NMR results correlate well with the known activities of these peptides. Thus, for this class of peptides, the presence of a beta-hairpin fold is more essential than the number of cationic charges for antimicrobial activity. This study indicates that 31P NMR lineshapes of uniaxially aligned membranes are well correlated with antimicrobial activity, and can be used as a diagnostic tool to understand the peptide-lipid interactions of these antimicrobial peptides.
منابع مشابه
Intermolecular packing and alignment in an ordered beta-hairpin antimicrobial peptide aggregate from 2D solid-state NMR.
The aggregation and packing of a membrane-disruptive beta-hairpin antimicrobial peptide, protegrin-1 (PG-1), in the solid state are investigated to understand its oligomerization and hydrogen-bonding propensity. Incubation of PG-1 in phosphate buffer saline produced well-ordered nanometer-scale aggregates, as indicated by 13C and 15N NMR line widths, chemical shifts, and electron microscopy. Tw...
متن کاملStructure and mechanism of beta-hairpin antimicrobial peptides in lipid bilayers from solid-state NMR spectroscopy.
The membrane-bound structure, lipid interaction, and dynamics of the arginine-rich beta-hairpin antimicrobial peptide PG-1 as studied by solid-state NMR are highlighted here. A variety of solid-state NMR techniques, including paramagnetic relaxation enhancement, (1)H and (19)F spin diffusion, dipolar recoupling distance experiments, and 2D anisotropic-isotropic correlation experiments, are used...
متن کاملDynamic structure of disulfide-removed linear analogs of tachyplesin-I in the lipid bilayer from solid-state NMR.
Tachyplesin-I (TP-I) is a 17-residue beta-hairpin antimicrobial peptide containing two disulfide bonds. Linear analogs of TP-I where the four Cys residues were replaced by aromatic and aliphatic residues, TPX4, were found to have varying degrees of activities, with the aromatic analogs similarly potent as TP-I. Understanding the different activities of the linear analogs should give insight int...
متن کاملPeptide-lipid interactions of the beta-hairpin antimicrobial peptide tachyplesin and its linear derivatives from solid-state NMR.
The peptide-lipid interaction of a beta-hairpin antimicrobial peptide tachyplesin-1 (TP-1) and its linear derivatives are investigated to gain insight into the mechanism of antimicrobial activity. (31)P and (2)H NMR spectra of uniaxially aligned lipid bilayers of varying compositions and peptide concentrations are measured to determine the peptide-induced orientational disorder and the selectiv...
متن کاملConformation, dynamics, and insertion of a noncysteine-containing protegrin-1 analogue in lipid membranes from solid-state NMR spectroscopy.
Disulfide-bonded beta-hairpin structures are common among antimicrobial peptides. Disulfide bonds are known to be important for antimicrobial activity, but the underlying structural reason is not well understood. We have investigated the membrane-bound structure of a disulfide-deleted analogue of the antimicrobial peptide protegrin-1, in which the four Cys residues were replaced by Ala. The sec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1716 1 شماره
صفحات -
تاریخ انتشار 2005