Diffusion Model Based Spectral Clustering for Protein-Protein Interaction Networks
نویسندگان
چکیده
BACKGROUND A goal of systems biology is to analyze large-scale molecular networks including gene expressions and protein-protein interactions, revealing the relationships between network structures and their biological functions. Dividing a protein-protein interaction (PPI) network into naturally grouped parts is an essential way to investigate the relationship between topology of networks and their functions. However, clear modular decomposition is often hard due to the heterogeneous or scale-free properties of PPI networks. METHODOLOGY/PRINCIPAL FINDINGS To address this problem, we propose a diffusion model-based spectral clustering algorithm, which analytically solves the cluster structure of PPI networks as a problem of random walks in the diffusion process in them. To cope with the heterogeneity of the networks, the power factor is introduced to adjust the diffusion matrix by weighting the transition (adjacency) matrix according to a node degree matrix. This algorithm is named adjustable diffusion matrix-based spectral clustering (ADMSC). To demonstrate the feasibility of ADMSC, we apply it to decomposition of a yeast PPI network, identifying biologically significant clusters with approximately equal size. Compared with other established algorithms, ADMSC facilitates clear and fast decomposition of PPI networks. CONCLUSIONS/SIGNIFICANCE ADMSC is proposed by introducing the power factor that adjusts the diffusion matrix to the heterogeneity of the PPI networks. ADMSC effectively partitions PPI networks into biologically significant clusters with almost equal sizes, while being very fast, robust and appealing simple.
منابع مشابه
Construction and Analysis of Tissue-Specific Protein-Protein Interaction Networks in Humans
We have studied the changes in protein-protein interaction network of 38 different tissues of the human body. 123 gene expression samples from these tissues were used to construct human protein-protein interaction network. This network is then pruned using the gene expression samples of each tissue to construct different protein-protein interaction networks corresponding to different studied ti...
متن کاملAlignment and integration of complex networks by hypergraph-based spectral clustering
Complex networks possess a rich, multiscale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction, or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these proble...
متن کاملComparison of Hubs in Effective Normal and Tumor Protein Interaction Networks
ABSTRACTIntroduction: Cancer is caused by genetic abnormalities, such as mutation of ontogenesis or tumor suppressor genes which alter downstream signaling pathways and protein-protein interactions. Comparison of protein interactions in cancerous and normal cells can be of help in mechanisms of disease diagnoses and treatments. Methods: We constructed protein interaction networks of cancerous a...
متن کاملIdentification and Quantification of Texture Soy Protein in A Mixture with Beef Meat Using ATR-FTIR Spectroscopy in Combination with Chemometric Methods
Meat, as an important source of protein, is one of the main parts of many people’s diet. Due toeconomic interests and thereupon adulteration, there are special concerns on its accurate labeling.In this study Fourier transform infrared (ATR-FTIR) spectroscopy combined with chemometrictechniques (principal component analysis (PCA), artificial neural networks (ANNs), and partial<...
متن کاملIdentification and Quantification of Texture Soy Protein in A Mixture with Beef Meat Using ATR-FTIR Spectroscopy in Combination with Chemometric Methods
Meat, as an important source of protein, is one of the main parts of many people’s diet. Due toeconomic interests and thereupon adulteration, there are special concerns on its accurate labeling.In this study Fourier transform infrared (ATR-FTIR) spectroscopy combined with chemometrictechniques (principal component analysis (PCA), artificial neural networks (ANNs), and partial<...
متن کامل