Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Abeta production in APP23 transgenic mice.

نویسندگان

  • Thomas A Bayer
  • Stephanie Schäfer
  • Andreas Simons
  • André Kemmling
  • Thomas Kamer
  • Ralf Tepest
  • Anne Eckert
  • Katrin Schüssel
  • Oliver Eikenberg
  • Christine Sturchler-Pierrat
  • Dorothee Abramowski
  • Matthias Staufenbiel
  • Gerd Multhaup
چکیده

The Cu-binding beta-amyloid precursor protein (APP), and the amyloid Abeta peptide have been proposed to play a role in physiological metal regulation. There is accumulating evidence of an unbalanced Cu homeostasis with a causative or diagnostic link to Alzheimer's disease. Whereas elevated Cu levels are observed in APP knockout mice, APP overexpression results in reduced Cu in transgenic mouse brain. Moreover, Cu induces a decrease in Abeta levels in APP-transfected cells in vitro. To investigate the influence of bioavailable Cu, transgenic APP23 mice received an oral treatment with Cu-supplemented sucrose-sweetened drinking water (1). Chronic APP overexpression per se reduced superoxide dismutase 1 activity in transgenic mouse brain, which could be restored to normal levels after Cu treatment (2). A significant increase of brain Cu indicated its bioavailability on Cu treatment in APP23 mice, whereas Cu levels remained unaffected in littermate controls (3). Cu treatment lowered endogenous CNS Abeta before a detectable reduction of amyloid plaques. Thus, APP23 mice reveal APP-induced alterations linked to Cu homeostasis, which can be reversed by addition of dietary Cu.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beta-amyloid (1-42)-induced learning and memory deficits in mice: involvement of oxidative burdens in the hippocampus and cerebral cortex.

We have demonstrated that oxidative stress is involved, at least in part, in beta-amyloid protein (Abeta)-induced neurotoxicity in vivo [Eur. J. Neurosci. 1999;11:83-90; Neuroscience 2003;119:399-419]. However, mechanistic links between oxidative stress and memory loss in response to Abeta remain elusive. In the present study, we examined whether oxidative stress contributes to the memory defic...

متن کامل

Brain estrogen deficiency accelerates Abeta plaque formation in an Alzheimer's disease animal model.

Much evidence indicates that women have a higher risk of developing Alzheimer's disease (AD) than do men. The reason for this gender difference is unclear. We hypothesize that estrogen deficiency in the brains of women with AD may be a key risk factor. In rapidly acquired postmortem brains from women with AD, we found greatly reduced estrogen levels compared with those from age- and gender-matc...

متن کامل

Deletion of tumor necrosis factor death receptor inhibits amyloid β generation and prevents learning and memory deficits in Alzheimer's mice

The tumor necrosis factor type 1 death receptor (TNFR1) contributes to apoptosis. TNFR1, a subgroup of the TNFR superfamily, contains a cytoplasmic death domain. We recently demonstrated that the TNFR1 cascade is required for amyloid beta protein (Abeta)-induced neuronal death. However, the function of TNFR1 in Abeta plaque pathology and amyloid precursor protein (APP) processing in Alzheimer's...

متن کامل

Amyloid Beta Annular Protofibrils in Cell Processes and Synapses Accumulate with Aging and Alzheimer-Associated Genetic Modification

Amyloid beta (Abeta) annular protofibrils (APFs) have been described where the structure is related to that of beta barrel pore-forming bacterial toxins and exhibits cellular toxicity. To investigate the relationship of Abeta APFs to disease and their ultrastructural localization in brain tissue, we conducted a pre-embedding immunoelectron microscopic study using anti-annular protofibril antise...

متن کامل

Calpastatin modulates APP processing in the brains of β-amyloid depositing but not wild-type mice.

We report that neuronal overexpression of the endogenous inhibitor of calpains, calpastatin (CAST), in a mouse model of human Alzheimer's disease (AD) β-amyloidosis, the APP23 mouse, reduces β-amyloid (Aβ) pathology and Aβ levels when comparing aged, double transgenic (tg) APP23/CAST with APP23 mice. Concurrent with Aβ plaque deposition, aged APP23/CAST mice show a decrease in the steady-state ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 24  شماره 

صفحات  -

تاریخ انتشار 2003