On the relative proof complexity of deep inference via atomic flows

نویسندگان

  • Anupam Das 'Ecole Normale Sup'erieure de Lyon
  • France
چکیده

Abstract. We consider the proof complexity of the minimal complete fragment, KS, of standard deep inference systems for propositional logic. To examine the size of proofs we employ atomic flows, diagrams that trace structural changes through a proof but ignore logical information. As results we obtain a polynomial simulation of versions of Resolution, along with some extensions. We also show that these systems, as well as bounded-depth Frege systems, cannot polynomially simulate KS, by giving polynomial-size proofs of certain variants of the propositional pigeonhole principle in KS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Results on the Relative Proof Complexity of Deep Inference via Atomic Flows

Abstract. We consider the proof complexity of the minimal complete fragment of standard deep inference, denoted KS. To examine the size of proofs we employ atomic flows, diagrams that trace structural changes through a proof but ignore logical information. As results we obtain a polynomial simulation of dag-like cut-free Gentzen and Resolution, along with some extensions. We also show that thes...

متن کامل

On the relative proof complexity of deep inference via atomic flows

Abstract. We consider the proof complexity of the minimal complete fragment, KS, of standard deep inference systems for propositional logic. To examine the size of proofs we employ atomic flows, diagrams that trace structural changes through a proof but ignore logical information. As results we obtain a polynomial simulation of versions of Resolution, along with some extensions. We also show th...

متن کامل

Complexity of Deep Inference via Atomic Flows

We consider the fragment of deep inference free of compression mechanisms and compare its proof complexity to other systems, utilising ‘atomic flows’ to examine size of proofs. Results include a simulation of Resolution and dag-like cut-free Gentzen, as well as a separation from bounded-depth Frege.

متن کامل

Quasipolynomial Normalisation in Deep Inference via Atomic Flows and Threshold Formulae

ABSTRACT. Jeřábek showed that analytic propositional-logic deep-inference proofs can be constructed in quasipolynomial time from nonanalytic proofs. In this work, we improve on that as follows: 1) we significantly simplify the technique; 2) our normalisation procedure is direct, i.e., it is internal to deep inference. The paper is self-contained, and provides a starting point and a good deal of...

متن کامل

A Quasipolynomial Cut-Elimination Procedure in Deep Inference via Atomic Flows and Threshold Formulae

Jeřábek showed that analytic propositional-logic deep-inference proofs can be constructed in quasipolynomial time from nonanalytic proofs. In this work, we improve on that as follows: 1) we significantly simplify the technique; 2) our normalisation procedure is direct, i.e., it is internal to deep inference. The paper is self-contained, and provides a starting point and a good deal of informati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015