Chemokine signaling controls intracortical migration and final distribution of GABAergic interneurons.
نویسندگان
چکیده
Functioning of the cerebral cortex requires the coordinated assembly of circuits involving glutamatergic projection neurons and GABAergic interneurons. Although much is known about the migration of interneurons from the subpallium to the cortex, our understanding of the mechanisms controlling their precise integration within the cortex is still limited. Here, we have investigated in detail the behavior of GABAergic interneurons as they first enter the developing cortex by using time-lapse videomicroscopy, slice culture, and in utero experimental manipulations and analysis of mouse mutants. We found that interneurons actively avoid the cortical plate for a period of approximately 48 h after reaching the pallium; during this time, interneurons disperse tangentially through the marginal and subventricular zones. Perturbation of CXCL12/CXCR4 signaling causes premature cortical plate invasion by cortical interneurons and, in the long term, disrupts their laminar and regional distribution. These results suggest that regulation of cortical plate invasion by GABAergic interneurons is a key event in cortical development, because it directly influences the coordinated formation of appropriate glutamatergic and GABAergic neuronal assemblies.
منابع مشابه
Intermediate Progenitors Facilitate Intracortical Progression of Thalamocortical Axons and Interneurons through CXCL12 Chemokine Signaling.
Glutamatergic principal neurons, GABAergic interneurons and thalamocortical axons (TCAs) are essential elements of the cerebrocortical network. Principal neurons originate locally from radial glia and intermediate progenitors (IPCs), whereas interneurons and TCAs are of extrinsic origin. Little is known how the assembly of these elements is coordinated. C-X-C motif chemokine 12 (CXCL12), which ...
متن کاملCellular and molecular mechanisms controlling the migration of neocortical interneurons.
The discovery, approximately 15 years ago, that cortical GABAergic interneurons originate outside the pallium has revolutionized our understanding of the development of the cerebral cortex. It is now clear that glutamatergic pyramidal cells and GABAergic interneurons follow largely distinct development programs, a notion that has challenged our views on how these neurons assemble to form precis...
متن کاملLayer acquisition by cortical GABAergic interneurons is independent of Reelin signaling.
Functioning of the cerebral cortex requires the coordinated assembly of circuits involving glutamatergic projection neurons and GABAergic interneurons. Despite their segregated origin in different regions of the telencephalon, projection neurons and interneurons born synchronically end up adopting the same cortical layer, suggesting that layer acquisition is highly coordinated for both neuronal...
متن کاملMultimodal tangential migration of neocortical GABAergic neurons independent of GPI-anchored proteins.
Neuronal migration is crucial for the construction of neuronal architecture such as layers and nuclei. Most inhibitory interneurons in the neocortex derive from the basal forebrain and migrate tangentially; however, little is known about the mode of migration of these neurons in the cortex. We used glutamate decarboxylase (Gad)67-green fluorescent protein (GFP) knock-in embryonic mice with expr...
متن کاملCxcr7 Controls Neuronal Migration by Regulating Chemokine Responsiveness
The chemokine Cxcl12 binds Cxcr4 and Cxcr7 receptors to control cell migration in multiple biological contexts, including brain development, leukocyte trafficking, and tumorigenesis. Both receptors are expressed in the CNS, but how they cooperate during migration has not been elucidated. Here, we used the migration of cortical interneurons as a model to study this process. We found that Cxcr4 a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 7 شماره
صفحات -
تاریخ انتشار 2008