Does reorganization in the cuneate nucleus following neonatal forelimb amputation influence development of anomalous circuits within the somatosensory cortex?
نویسندگان
چکیده
Neonatal forelimb amputation in rats produces sprouting of sciatic nerve afferent fibers into the cuneate nucleus (CN) and results in 40% of individual CN neurons expressing both forelimb-stump and hindlimb receptive fields. The forelimb-stump region of primary somatosensory cortex (S-I) of these rats contains neurons in layer IV that express both stump and hindlimb receptive fields. However, the source of the aberrant input is the S-I hindlimb region conveyed to the S-I forelimb-stump region via intracortical projections. Although the reorganization in S-I reflects changes in cortical circuitry, it is possible that these in turn are dependent on the CN reorganization. The present study was designed to directly test whether the sprouting of sciatic afferents into the CN is required for expression of the hindlimb inputs in the S-I forelimb-stump field. To inhibit sprouting, neurotrophin-3 (NT-3) was applied to the cut nerves following amputation. At P60 or older, NT-3-treated rats showed minimal sciatic nerve fibers in the CN. Multiunit electrophysiological recordings in the CN of NT-3-treated, amputated rats revealed 6.3% of sites were both stump/hindlimb responsive, compared with 30.5% in saline-treated amputated animals. Evaluation of the S-I following GABA receptor blockade, revealed that the percentage of hindlimb responsive sites in the stump representation of the NT-3-treated rats (34.2%) was not significantly different from that in saline-treated rats (31.5%). These results indicate that brain stem reorganization in the form of sprouting of sciatic afferents into the CN is not necessary for development of anomalous hindlimb receptive fields within the S-I forelimb/stump region.
منابع مشابه
Title: Does Reorganization in the Cuneate Nucleus Following Neonatal Forelimb Amputation Influence Development of Anomalous Circuits within the Somatosensory Cortex? Abbreviated title: Does Cuneate Reorganization Influence Anomalous Cortical Circuit Authors:
Neonatal forelimb amputation in rats produces sprouting of sciatic nerve afferent fibers into the cuneate nucleus (CN) and results in 40% of individual CN neurons expressing both forelimb-stump and hindlimb receptive fields. The forelimb-stump region of primary somatosensory cortex (S-I) of these rats contains neurons in layer IV that express both stump and hindlimb receptive fields. However, t...
متن کاملAnatomical and functional changes in the organization of the cuneate nucleus of adult rats after fetal forelimb amputation.
A previous study has shown that fetal forelimb removal in the rat results in an increase in the size of the hindlimb representation in primary somatosensory cortex and suggested that this anomalous cortical organization may have resulted from alterations in the primary afferent innervation of the dorsal column nuclei (Killackey and Dawson, 1989). The present study used both anatomical and elect...
متن کاملSource of inappropriate receptive fields in cortical somatotopic maps from rats that sustained neonatal forelimb removal.
Previously this laboratory demonstrated that forelimb removal at birth in rats results in the invasion of the cuneate nucleus by sciatic nerve axons and the development of cuneothalamic cells with receptive fields that include both the forelimb-stump and the hindlimb. However, unit-cluster recordings from primary somatosensory cortex (SI) of these animals revealed few sites in the forelimb-stum...
متن کاملRole of development in reorganization of the SI forelimb-stump representation in fetally, neonatally, and adult amputated rats.
Rats that sustain forelimb removal on postnatal day (P) 0 exhibit numerous multi-unit recording sites in the forelimb-stump representation of primary somatosensory cortex (SI) that also respond to hindlimb stimulation when cortical GABAA+B receptors are blocked. Most of these hindlimb inputs originate in the medial SI hindlimb representation. Although many forelimb-stump sites in these animals ...
متن کاملThe effects of long-standing limb loss on anatomical reorganization of the somatosensory afferents in the brainstem and spinal cord.
We examined the terminations of sensory afferents in the brainstem and spinal cord of squirrel monkeys and prosimian galagos 4-8 years after a therapeutic forelimb or hindlimb amputation within 2 months of birth. In each animal, the distributions of labeled sensory afferent terminations from remaining body parts proximal to the limb stump were much more extensive than in normal animals. These s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 99 2 شماره
صفحات -
تاریخ انتشار 2008