Cardiac and skeletal muscle disorders caused by mutations in the intracellular Ca2+ release channels.

نویسندگان

  • Silvia G Priori
  • Carlo Napolitano
چکیده

Here we review the current knowledge about the mutations of the gene encoding the cardiac ryanodine receptor (RyR2) that cause cardiac arrhythmias. Similarities between the mutations identified in the RyR2 gene and those found in the gene RyR1 that cause malignant hyperthermia and central core disease are discussed. In vitro functional characterization of RyR1 and RyR2 mutants is reviewed, with a focus on the contribution that in vitro expression studies have made to our understanding of related human diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Complex Role of Store Operated Calcium Entry Pathways and Related Proteins in the Function of Cardiac, Skeletal and Vascular Smooth Muscle Cells

Cardiac, skeletal, and smooth muscle cells shared the common feature of contraction in response to different stimuli. Agonist-induced muscle's contraction is triggered by a cytosolic free Ca2+ concentration increase due to a rapid Ca2+ release from intracellular stores and a transmembrane Ca2+ influx, mainly through L-type Ca2+ channels. Compelling evidences have demonstrated that Ca2+ might al...

متن کامل

S165F mutation of junctophilin 2 affects Ca2+ signalling in skeletal muscle.

JPs (junctophilins) contribute to the formation of junctional membrane complexes in muscle cells by physically linking the t-tubule (transverse-tubule) and SR (sarcoplasmic reticulum) membranes. In humans with HCM (hypertrophic cardiomyopathy), mutations in JP2 are linked to altered Ca2+ signalling in cardiomyocytes; however, the effects of these mutations on skeletal muscle function have not b...

متن کامل

The couplonopathies: A comparative approach to a class of diseases of skeletal and cardiac muscle

A novel category of diseases of striated muscle is proposed, the couplonopathies, as those that affect components of the couplon and thereby alter its operation. Couplons are the functional units of intracellular calcium release in excitation-contraction coupling. They comprise dihydropyridine receptors, ryanodine receptors (Ca2+ release channels), and a growing list of ancillary proteins whose...

متن کامل

Regulation of Ca2+ release from internal stores in cardiac and skeletal muscles.

It is widely accepted that Ca2+ is released from the sarcoplasmic reticulum by a specialized type of calcium channel, i.e., ryanodine receptor, by the process of Ca2+-induced Ca2+ release. This process is triggered mainly by dihydropyridine receptors, i.e., L-type (long lasting) calcium channels, directly or indirectly interacting with ryanodine receptor. In addition, multiple endogenous and ex...

متن کامل

Caffeine-induced Release of Intracellular Ca2+ from Chinese Hamster Ovary Cells Expressing Skeletal Muscle Ryanodine Receptor

The ryanodine receptor (RyR)/Ca2+ release channel is an essential component of excitation-contraction coupling in striated muscle cells. To study the function and regulation of the Ca2+ release channel, we tested the effect of caffeine on the full-length and carboxyl-terminal portion of skeletal muscle RyR expressed in a Chinese hamster ovary (CHO) cell line. Caffeine induced openings of the fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 115 8  شماره 

صفحات  -

تاریخ انتشار 2005