A Hybrid Benders' Decomposition Method for Solving Stochastic Constraint Programs with Linear Recourse
نویسندگان
چکیده
We adopt Benders’ decomposition algorithm to solve scenariobased Stochastic Constraint Programs (SCPs) with linear recourse. Rather than attempting to solve SCPs via a monolithic model, we show that one can iteratively solve a collection of smaller sub-problems and arrive at a solution to the entire problem. In this approach, decision variables corresponding to the initial stage and linear recourse actions are grouped into two sub-problems. The sub-problem corresponding to the recourse action further decomposes into independent problems, each of which is a representation of a single scenario. Our computational experience on stochastic versions of the well-known template design and warehouse location problems shows that, for linear recourse SCPs, Benders’ decomposition algorithm provides a very efficient solution method.
منابع مشابه
A Benders’ Decomposition Approach for the Stochastic CPs with Linear Recourse
We adopt Benders’ decomposition algorithm to solve scenariobased Stochastic Constraint Programs (SCPs) with linear recourse. Rather than attempting to solve SCPs via a monolithic model, we show that one can iteratively solve a collection of smaller sub-problems and arrive at a solution to the entire problem. In this approach, decision variables corresponding to the initial stage and linear reco...
متن کاملAn Adaptive Partition-Based Approach for Solving Two-Stage Stochastic Programs with Fixed Recourse
We study an adaptive partition-based approach for solving two-stage stochastic programs with fixed recourse. A partition-based formulation is a relaxation of the original stochastic program, and we study a finitely converging algorithm in which the partition is adaptively adjusted until it yields an optimal solution. A solution guided refinement strategy is developed to refine the partition by ...
متن کاملA Benders\' Decomposition Based Solution Method for Solving User Equilibrium Problem: Deterministic and Stochastic Cases
The traffic assignment problem is one of the most important problems for analyzing and optimizing the transportation network to find optimal flows. This study presented a new formulation based on a generalized Benders' decomposition approach to solve its important part, i.e. user equilibrium problems, in deterministic and stochastic cases. The new approach decomposed the problem into a master p...
متن کاملDecomposition Based Interior Point Methods for Two-Stage Stochastic Convex Quadratic Programs with Recourse
Zhao [28] recently showed that the log barrier associated with the recourse function of twostage stochastic linear programs behaves as a strongly self-concordant barrier and forms a self concordant family on the first stage solutions. In this paper we show that the recourse function is also strongly self-concordant and forms a self concordant family for the two-stage stochastic convex quadratic...
متن کاملPartial Decomposition Strategies for Two-Stage Stochastic Integer Programs
We propose the concept of partial Benders decomposition, based on the idea of retaining a subset of scenario subproblems in the master formulation and develop a theory to support it that illustrates how it may be applied to any stochastic integer program with continuous recourse. Such programs are used to model many practical applications such as the one considered in this paper, network design...
متن کامل