Worst-case temperature analysis for different resource models
نویسندگان
چکیده
The rapid increase in heat dissipation in real-time systems imposes various thermal issues. For instance, real-time constraints cannot be guaranteed if a certain threshold temperature is exceeded, as it would immediately reduce the system reliability and performance. Dynamic thermal management techniques are promising methods to prevent a system from overheating. However, when designing real-time systems that make use of such thermal management techniques, the designer has to be aware of their effect on both real-time constraints and worst-case peak temperature. In particular, the worst-case peak temperature of a real-time system with non-deterministic workload is the maximum possible temperature under all feasible scenarios of task arrivals. This article proposes an analytic framework to calculate the worst-case peak temperature of a system with general resource availabilities, which means that computing power might not be fully available for certain time intervals. The event and resource models are based on real-time and network calculus, and therefore, our analysis method is able to handle a broad range of uncertainties in terms of task arrivals and available computing power. Finally, we propose an indicator for the quality of the resource model with respect to worst-case peak temperature and schedulability.
منابع مشابه
Worst-Case Temperature Analysis for Different Resource Availabilities: A Case Study
With three-dimensional chip integration, the heat dissipation per unit area increases rapidly and may result in high on-chip temperatures. Real-time constraints cannot be guaranteed anymore as exceeding a certain threshold temperature can immediately reduce the systems reliability and performance. Dynamic thermal management methods are promising methods to prevent the system from overheating. H...
متن کاملSensitivity Analysis Based Comparative Assessment of Resource Mix Using MCDM Technique: A Case Study of Thar Desert, India
In the last decade, there has been a lot of focus on sustainable development in the electrical power industry to meet the growing energy demand. This has led to an increase in the integration of renewable energy sources (RES). In addition to being abundantly available, the RES offers advantages such as low environmental impact and increased social development of rural communities which are impe...
متن کاملThe Importance of Temporal and Spatial Temperature Gradients in IC Reliability Analysis
Existing IC reliability models assume a uniform, typically worst-case, operating temperature, but temporal and spatial temperature variations affect expected device lifetime. This paper presents a model that accounts for temperature gradients, dramatically improving interconnect and gate-oxide lifetime prediction accuracy. By modeling expected lifetime as a resource that is consumed over time a...
متن کاملTemperature-Aware Modeling and Banking of IC Lifetime Reliability
Most existing integrated circuit (IC) reliability models assume a uniform, typically worst-case, operating temperature, but temporal and spatial temperature variations affect expected device lifetime. As a result, design decisions and dynamic thermal management (DTM) techniques using worst-case models are pessimistic and result in excessive design margins and unnecessary runtime engagement of c...
متن کاملBanking Chip Lifetime: Opportunities and Implementation
Most existing integrated circuit reliability models assume a uniform, typically worst-case, operating temperature, but temporal and spatial temperature variations affect expected device lifetime. As a result, design decisions and dynamic thermal management techniques using worst-case models are pessimistic and result in excessive design margins and unnecessary runtime engagement (and associated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IET Circuits, Devices & Systems
دوره 6 شماره
صفحات -
تاریخ انتشار 2012