A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere

نویسندگان

  • Natasha Flyer
  • Erik Lehto
  • Sébastien Blaise
  • Grady B. Wright
  • Amik St.-Cyr
چکیده

The current paper establishes the computational efficiency and accuracy of the RBFFD method for large-scale geoscience modeling with comparisons to state-of-the-art methods as high-order discontinuous Galerkin and spherical harmonics, the latter using expansions with close to 300,000 bases. The test cases are demanding fluid flow problems on the sphere that exhibit numerical challenges, such as Gibbs phenomena, sharp gradients, and complex vortical dynamics with rapid energy transfer from large to small scales over short time periods. The computations were possible as well as very competitive due to the implementation of hyperviscosity on large RBF stencil sizes (corresponding roughly to 6th to 9th order methods) with up to O(105) nodes on the sphere. The RBF-FD method scaled as O(N) per time step, where N is the total number of nodes on the sphere. In the Appendix, guidelines are given on how to chose parameters when using RBF-FD to solve hyperbolic PDEs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A task parallel implementation of an RBF-generated finite difference method for the shallow water equations on the sphere✩

Radial basis function-generated finite difference (RBF-FD) methods have recently been proposed as very interesting for global scale geophysical simulations, and have been shown to outperform established pseudo-spectral and discontinuous Galerkin methods for shallow water test problems. In order to be competitive for very large scale simulations, the implementation of the RBF-FD methods needs to...

متن کامل

A Radial Basis Function Method for the Shallow Water Equations on a Sphere

The paper derives the first known numerical shallow water model on the sphere using radial basis function (RBF) spatial discretisation, a novel numerical methodology that does not require any grid or mesh. In order to perform a study with regard to its spatial and temporal errors, two nonlinear test cases with known analytical solutions are considered. The first is global steady-state flow with...

متن کامل

Radial Basis Function-generated Finite Differences: A Mesh-free Method for Computational Geosciences

Radial basis function generated finite differences (RBF-FD) is a mesh-free method for numerically solving partial differential equations (PDEs) that emerged in the last decade and has shown rapid growth in the last few years. From a practical standpoint, RBF-FD sprouted out of global RBF methods, which have shown exceptional numerical qualities in terms of accuracy and time stability for numeri...

متن کامل

A scalable RBF-FD method for atmospheric flow

Radial basis function-generated finite difference (RBF–FD) methods have recently been proposed as very interesting for global scale geophysical simulations, and have been shown to outperform established pseudo-spectral and discontinuous Galerkin methods for shallow water test problems. In order to be competitive for very large scale simulations, the RBF–FD methods needs to be efficiently implem...

متن کامل

Numerical quadrature over the surface of a sphere

Large-scale simulations in spherical geometries require associated quadrature formulas. Classical approaches based on tabulated weights are limited to specific quasi-uniform distributions of relatively low numbers of nodes. By using a radial basis function-generated finite differences (RBF-FD) based approach, the proposed algorithm creates quadrature weights for N arbitrarily scattered nodes in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 231  شماره 

صفحات  -

تاریخ انتشار 2012