PDZ Domain Suppression of an ER Retention Signal in NMDA Receptor NR1 Splice Variants

نویسندگان

  • Steve Standley
  • Katherine W. Roche
  • Jennifer McCallum
  • Nathalie Sans
  • Robert J. Wenthold
چکیده

The NMDA receptor NR1 subunit has four splice variants that differ in their C-terminal, cytoplasmic domain. We investigated the contribution of the C-terminal cassettes, C0, C1, C2, and C2', to trafficking of NR1 in heterologous cells and neurons. We identified an ER retention signal (RRR) in the C1 cassette of NR1, which is similar to the RXR motif in ATP-sensitive K(+) channels (Zerangue et al., 1999). We found that surface expression of NR1-3, which contains C1, is due to a site on the C2' cassette, which includes the terminal 4 amino acid PDZ-interacting domain. This site suppresses ER retention of the C1 cassette and leads to surface expression. These findings suggest a role for PDZ proteins in facilitating the transition of receptors from an intracellular pool to the surface of the neuron.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing.

Formation of mature excitatory synapses requires the assembly and delivery of NMDA receptors to the neuronal plasma membrane. A key step in the trafficking of NMDA receptors to synapses is the exit of newly assembled receptors from the endoplasmic reticulum (ER). Here we report the identification of an RXR-type ER retention/retrieval motif in the C-terminal tail of the NMDA receptor subunit NR1...

متن کامل

Alternative splicing of the C-terminal domain regulates cell surface expression of the NMDA receptor NR1 subunit.

Subcellular localization of the NMDA receptor NR1 splice forms was studied by expressing individual splice variants and their epitope-tagged derivatives in mouse fibroblasts and in hippocampal neurons. When NR1 splice variants were expressed in fibroblasts, the amount of NR1 molecules expressed on the cell surface varied among forms with different C-terminal cytoplasmic domains. The splice form...

متن کامل

Export from the endoplasmic reticulum of assembled N-methyl-d-aspartic acid receptors is controlled by a motif in the c terminus of the NR2 subunit.

Functional N-methyl-d-aspartic acid (NMDA) receptors are formed from the assembly of NR1 and NR2 subunits. When expressed alone, the major NR1 splice variant and the NR2 subunits are retained in the endoplasmic reticulum (ER), reflecting a quality control mechanism found in many complex multisubunit proteins to ensure that only fully assembled and properly folded complexes reach the cell surfac...

متن کامل

Relationship between availability of NMDA receptor subunits and their expression at the synapse.

The effect of increasing the expression of NMDA subunits in cerebellar granule cells (CGCs) by transfection was studied to determine how the availability of various NMDA subunits controls both the total pool of functional receptors and the synaptic pool. Overexpression of either NR2A or NR2B, but not splice variants of NR1, by transfection caused a significant increase in the total number of fu...

متن کامل

Splice variant-specific interaction of the NMDA receptor subunit NR1 with neuronal intermediate filaments.

NMDA receptors are excitatory neurotransmitter receptors critical for synaptic plasticity and neuronal development in the mammalian brain. These receptors are found highly concentrated in the postsynaptic membrane of glutamatergic synapses. To investigate the molecular mechanisms underlying NMDA receptor localization, we used the yeast two-hybrid system to identify proteins expressed in the bra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2000