Gene function prediction from synthetic lethality networks via ranking on demand
نویسندگان
چکیده
MOTIVATION Synthetic lethal interactions represent pairs of genes whose individual mutations are not lethal, while the double mutation of both genes does incur lethality. Several studies have shown a correlation between functional similarity of genes and their distances in networks based on synthetic lethal interactions. However, there is a lack of algorithms for predicting gene function from synthetic lethality interaction networks. RESULTS In this article, we present a novel technique called kernelROD for gene function prediction from synthetic lethal interaction networks based on kernel machines. We apply our novel algorithm to Gene Ontology functional annotation prediction in yeast. Our experiments show that our method leads to improved gene function prediction compared with state-of-the-art competitors and that combining genetic and congruence networks leads to a further improvement in prediction accuracy.
منابع مشابه
Comprehensive analysis and prediction of synthetic lethality using subcellular locations.
The lethality of a gene is a fundamental and representative measure for understanding the function of a gene and its associated bio-systems. Recently, many research groups have started focusing on the concept of synthetic lethality. The synthetic lethality between genes is defined by the combination of mutations in two genes causing cell death. Here, we confirm that synthetic lethality and cell...
متن کاملLong-Term Peak Demand Forecasting by Using Radial Basis Function Neural Networks
Prediction of peak loads in Iran up to year 2011 is discussed using the Radial Basis Function Networks (RBFNs). In this study, total system load forecast reflecting the current and future trends is carried out for global grid of Iran. Predictions were done for target years 2007 to 2011 respectively. Unlike short-term load forecasting, long-term load forecasting is mainly affected by economy...
متن کاملSynthetic lethality-based targets for discovery of new cancer therapeutics.
Synthetic lethality is based on the incompatibility of cell survival with the loss of function of two or more genes, not with loss of function of a single gene. If targets of synthetic lethality are deregulated or mutated in cancer cells, the strategy of synthetic lethality can result in significant increase of therapeutic efficacy and a favourable therapeutic window. In this review, we discuss...
متن کاملGene function prediction from congruent synthetic lethal interactions in yeast
We predicted gene function using synthetic lethal genetic interactions between null alleles in Saccharomyces cerevisiae. Phenotypic and protein interaction data indicate that synthetic lethal gene pairs function in parallel or compensating pathways. Congruent gene pairs, defined as sharing synthetic lethal partners, are in single pathway branches. We predicted benomyl sensitivity and nuclear mi...
متن کاملPrediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks
The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 26 7 شماره
صفحات -
تاریخ انتشار 2010