Fourier transform infrared quantitative analysis of sugars and lignin in pretreated softwood solid residues.
نویسندگان
چکیده
Hydrolysates were obtained from dilute sulfuric acid pretreatment of whole-tree softwood forest thinnings and softwood sawdust. Mid-infrared (IR) spectra were obtained on sample sets of wet washed hydrolysates, and 45 degrees C vacuum-dried washed hydrolysates, using a Fourier transform infrared (FTIR) spectrophotometer equipped with a diamond-composite attenuated total reflectance (ATR) cell. Partial least squares (PLS) analysis of spectra from each sample set was performed. Regression analyses for sugar components and lignin were generated using results obtained from standard wet chemical and high-performance liquid chromatography methods. The correlation coefficients of the predicted and measured values were >0.9. The root mean square standard error of the estimate for each component in the residues was generally within 2 wt% of the measured value except where reported in the tables. The PLS regression analysis of the wet washed solids was similar to the PLS regression analysis on the 45 degrees C vacuum-dried sample set. The FTIR-ATR technique allows mid-IR spectra to be obtained in a few minutes from wet washed or dried washed pretreated biomass solids. The prediction of the solids composition of an unknown washed pretreated solid is very rapid once the PLS method has been calibrated with known standard solid residues.
منابع مشابه
Chemical compositions of hardwood and softwood pulps employing photoacoustic Fourier transform infrared spectroscopy in combination with partial least-squares analysis.
In the present study, hardwood and softwood pulps were characterized by employing Fourier transform infrared photoacoustic spectroscopy (FT-IR-PAS). The pulp samples examined originated from Swedish sulfite and kraft pulp mills, which utilize different cooking processes and modern bleaching technologies. Partial least-squares (PLS) analysis was used to correlate the spectral data obtained with ...
متن کاملModification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungi
Wood decayed by brown rot fungi and wood treated with the chelator-mediated Fenton (CMF) reaction, either alone or together with a cellulose enzyme cocktail, was analyzed by small angle neutron scattering (SANS), sum frequency generation (SFG) spectroscopy, Fourier transform infrared (FTIR) analysis, X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (T...
متن کاملImpact of Hot Compressed Water Pretreatment on the Structural Changes of Woody Biomass for Bioethanol Production
As an initial step in an alternative use of woody biomass to produce bioethanol, this work was aimed at investigating the effect of hot compressed water (HCW) pretreatment within the temperature range 100 to 200 °C in a batch-type reactor on the structural changes of Tamarix ramosissima. The untreated and pretreated solid residues were characterized by X-ray diffraction (XRD), scanning electron...
متن کاملA New Method for Demethylation of Lignin from Woody Biomass using Biophysical Methods
Demethylation of softwood kraft lignin from woody biomass to improve the hydroxyl number in modified demethylated lignin and to produce lignin-based polyols was investigated using several biophysical techniques. Lignin is a tremendously under-developed natural polymer co-generated through papermaking and biomass fractionation. Molecular weights of lignins were analyzed by high-performance size-...
متن کاملMulti-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid–base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae
BACKGROUND Heavy usage of gasoline, burgeoning fuel prices, and environmental issues have paved the way for the exploration of cellulosic ethanol. Cellulosic ethanol production technologies are emerging and require continued technological advancements. One of the most challenging issues is the pretreatment of lignocellulosic biomass for the desired sugars yields after enzymatic hydrolysis. We h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied biochemistry and biotechnology
دوره 91-93 شماره
صفحات -
تاریخ انتشار 2001