A hybrid and adaptive tool-path generation approach of rapid prototyping and manufacturing for biomedical models
نویسندگان
چکیده
In this paper, a hybrid and adaptive tool-path generation approach, which is able to improve geometrical accuracy and build time of Rapid Prototyping/Manufacturing (RP/M) for complex biomedical models, is presented. Firstly, NURBS (Non-Uniform Rational B-Spline)-based curves were introduced to represent the boundary contours of sliced layers to keep the high-fidelity information of original models. Secondly, a hybrid tool-path generation algorithm was then developed to generate contour and zigzag tool-paths. The contour toolpaths are used to fabricate the boundary and neighboring regions of each sliced layer to preserve geometrical accuracy, and zigzag tool-paths for the internal region of the layer to simplify computing processes and speed up fabrication. Thirdly, based on developed build time and geometrical accuracy analysis models, algorithms were designed to generate an adaptive speed of the RP/M’s nozzle/print head for the contour tool-paths to address the geometrical characteristics of each layer, and to identify the best slope degree of the zigzag tool-paths towards achieving the minimum build time. Finally, five case studies of biomedical models with different geometrical characteristics and complexity were used to verify and demonstrate the improved performance of the approach in terms of processing effectiveness, geometrical accuracy and algorithm robustness.
منابع مشابه
An adaptive process planning approach of rapid prototyping and manufacturing
This paper presents an adaptive approach to improve the process planning of Rapid Prototyping/ Manufacturing (RP/M) for complex product models such as biomedical models. Non-Uniform Rational B-Spline (NURBS)-based curves were introduced to represent the boundary contours of the sliced layers in RP/M to maintain the geometrical accuracy of the original models. A mixed tool-path generation algori...
متن کاملOptimal design of supply chain network under uncertainty environment using hybrid analytical and simulation modeling approach
Models that aim to optimize the design of supply chain networks have gained more interest in the supply chain literature. Mixed-integer linear programming and discrete-event simulation are widely used for such an optimization problem. We present a hybrid approach to support decisions for supply chain network design using a combination of analytical and discrete-event simulation models. The prop...
متن کاملExtruder path generation for Curved Layer Fused Deposition Modeling
Extruder path generation for a new rapid prototyping technique named “Curved Layer Fused Deposition Modeling” (CLFDM) has been presented. The prototyping technique employs deposition of material in curved layers in contrast to flat layers as in Fused Deposition Modeling (FDM). The proposed method would be particularly advantageous over FDM in the manufacturing of thin, curved parts (shells) by ...
متن کاملConception of Part Reconstruction: Integration of Non-Contact Scanning and Rapid Prototyping
Today, modern manufacturing era is characterized by wide spread use of remanufacturing process in order to eliminate waste and contribute towards green manufacturing. The reengineering process can be carried out on damaged or worn out spare parts through an effective integration of reverse engineering and rapid prototyping approach. The integrated approach helps in considerable time reduction f...
متن کاملHybrid Models Performance Assessment to Predict Flow of Gamasyab River
Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers in Industry
دوره 64 شماره
صفحات -
تاریخ انتشار 2013