A micromechanics-inspired constitutive model for shape-memory alloys that accounts for initiation and saturation of phase transformation

نویسندگان

  • Alex Kelly
  • Aaron P. Stebner
  • Kaushik Bhattacharya
چکیده

A constitutive model to describe macroscopic elastic and transformation behaviors of polycrystalline shape-memory alloys is formulated using an internal variable thermodynamic framework. In a departure from prior phenomenological models, the proposed model treats initiation, growth kinetics, and saturation of transformation distinctly, consistent with physics revealed by recent multi-scale experiments and theoretical studies. Specifically, the proposed approach captures the macroscopic manifestations of three micromechanial facts, even though microstructures are not explicitly modeled: (1) Individual grains with favorable orientations and stresses for transformation are the first to nucleate martensite, and the local nucleation strain is relatively large. (2) Then, transformation interfaces propagate according to growth kinetics to traverse networks of grains, while previously formed martensite may reorient. (3) Ultimately, transformation saturates prior to 100% completion as some unfavorably-oriented grains do not transform; thus the total transformation strain of a polycrystal is modest relative to the initial, local nucleation strain. The proposed formulation also accounts for tension–compression asymmetry, processing anisotropy, and the distinction between stress-induced and temperature-induced transformations. Consequently, the model describes thermoelastic responses of shape-memory alloys subject to complex, multi-axial thermo-mechanical loadings. These abilities are demonstrated through detailed comparisons of simulations with experiments. & 2016 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A micromechanics-inspired constitutive model for shape-memory alloys

This paper presents a three-dimensional constitutive model for shape-memory alloys that generalizes the one-dimensional model presented earlier (Sadjadpour and Bhattacharya 2007 Smart Mater. Struct. 16 S51–62). These models build on recent micromechanical studies of the underlying microstructure of shape-memory alloys, and a key idea is that of an effective transformation strain of the martensi...

متن کامل

Adaptive Tunable Vibration Absorber using Shape Memory Alloy

This study presents a new approach to control the nonlinear dynamics of an adaptive absorber using shape memory alloy (SMA) element. Shape memory alloys are classified as smart materials that can remember their original shape after deformation. Stress and temperature-induced phase transformations are two typical behaviors of shape memory alloys. Changing the stiffness associated with phase tran...

متن کامل

Nonlinear Thermo-Mechanical Behaviour Analysis of Activated Composites With Shape Memory Alloy Fibres

General thermo-mechanical behavior of composites reinforced by shape memory alloy fibers is predicted using a three-dimensional analytical micromechanical method to consider the effect of fibers activation. Composite due to the micromechanical method can be exposed to general normal and shear mechanical and thermal loading which cause to activate the shape memory alloy fibers within polymeric m...

متن کامل

A micromechanics inspired constitutive model for shape-memory alloys: the one-dimensional case

This paper presents a constitutive model for shape-memory alloys that builds on ideas generated from recent micromechanical studies of the underlying microstructure. The presentation here is in one dimension. It is applicable in a wide temperature range that covers both the shape-memory effect and superelasticity, is valid for a wide range of strain rates and incorporates plasticity. The thermo...

متن کامل

Influence of heat generation on the phase transformations and impact responses of composite plates with embedded SMA wires

In the present research, in contrast to the available papers, not only the superelasticity but also the shape memory effects are taken into account in determination of the impact responses. At the same time, in addition to modifying Brinson’s model for the shape memory alloys (SMAs), to include new parameters and loading events, and Hertz contact law, distributions of the SMA phases are conside...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016