Predicting motor vehicle crashes using Support Vector Machine models.

نویسندگان

  • Xiugang Li
  • Dominique Lord
  • Yunlong Zhang
  • Yuanchang Xie
چکیده

Crash prediction models have been very popular in highway safety analyses. However, in highway safety research, the prediction of outcomes is seldom, if ever, the only research objective when estimating crash prediction models. Only very few existing methods can be used to efficiently predict motor vehicle crashes. Thus, there is a need to examine new methods for better predicting motor vehicle crashes. The objective of this study is to evaluate the application of Support Vector Machine (SVM) models for predicting motor vehicle crashes. SVM models, which are based on the statistical learning theory, are a new class of models that can be used for predicting values. To accomplish the objective of this study, Negative Binomial (NB) regression and SVM models were developed and compared using data collected on rural frontage roads in Texas. Several models were estimated using different sample sizes. The study shows that SVM models predict crash data more effectively and accurately than traditional NB models. In addition, SVM models do not over-fit the data and offer similar, if not better, performance than Back-Propagation Neural Network (BPNN) models documented in previous research. Given this characteristic and the fact that SVM models are faster to implement than BPNN models, it is suggested to use these models if the sole purpose of the study consists of predicting motor vehicle crashes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the Efficiency of Linear and Nonlinear Models in Predicting Monthly Rainfall (Case Study: Hamedan Province)

     In this research, we used the support vector machine (SVM), support vector machine combine with wavelet transform (W-SVM), ARMAX and ARIMA models to predict the monthly values of precipitation. The study considers monthly time series data for precipitation stations located in Hamedan province during a 25-year period (1998-2016). The 25-year simulation period was divided into 17 years for t...

متن کامل

TRB Paper 10-2563 Hot Spot Identification by Modeling Single-Vehicle and Multi-Vehicle Crashes Separately

There has been considerable research conducted on the development of statistical models for predicting motor vehicle crashes on highway facilities. These models have often been employed to estimate the number of crashes per unit of time for an entire highway segment or intersection, without distinguishing the influence different sub-groups have on crash risk. The two most important sub-groups t...

متن کامل

Improvement of Support Vector Machine and Random Forest Algorithm in Predicting Khorramabad River Flow Uusing Non-uniform De-Noising of data and Simplex Algorithm

In this study, in order to simulate the monthly flow of the Khorramabad River, the time series of this river was decomposed into three levels using the wavelet of Daubechies-3, during the period of 1955-2014. Based on this, it was found that there is a Non-uniform noise that includes two periods of time in this signal, with the October 2008 border which required that the signal be become non-un...

متن کامل

Predicting Traffic Accidents Through Heterogeneous Urban Data: A Case Study

With the urbanization process around the globe, traffic accidents have undergone a rapid growth in recent decades, causing significant life and property losses. Predicting traffic accidents is a crucial problem to improving transportation and public safety as well as safe routing. However, the problem is also challenging due to the imbalanced classes, spatial heterogeneity, and the non-linear r...

متن کامل

Toward a Thorough Approach to Predicting Klinkenberg Permeability in a Tight Gas Reservoir: A Comparative Study

Klinkenberg permeability is an important parameter in tight gas reservoirs. There are conventional methods for determining it, but these methods depend on core permeability. Cores are few in number, but well logs are usually accessible for all wells and provide continuous information. In this regard, regression methods have been used to achieve reliable relations between log readings and Klinke...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Accident; analysis and prevention

دوره 40 4  شماره 

صفحات  -

تاریخ انتشار 2008