Fitness Cost of Fluoroquinolone Resistance in Clinical Isolates of Pseudomonas aeruginosa Differs by Type III Secretion Genotype
نویسندگان
چکیده
Fluoroquinolone (FQ) resistance is highly prevalent among clinical strains of Pseudomonas aeruginosa, limiting treatment options. We have reported previously that highly virulent strains containing the exoU gene of the type III secretion system are more likely to be FQ-resistant than strains containing the exoS gene, as well as more likely to acquire resistance-conferring mutations in gyrA/B and parC/E. We hypothesize that FQ-resistance imposes a lower fitness cost on exoU compared to exoS strains, thus allowing for better adaptation to the FQ-rich clinical environment. We created isogenic mutants containing a common FQ-resistance conferring point mutation in parC from three exoU to three exoS clinical isolates and tested fitness in vitro using head-to-head competition assays. The mutation differentially affected fitness in the exoU and exoS strains tested. While the addition of the parC mutation dramatically increased fitness in one of the exoU strains leaving the other two unaffected, all three exoS strains displayed a general decrease in fitness. In addition, we found that exoU strains may be able to compensate for the fitness costs associated with the mutation through better regulation of supercoiling compared to the exoS strains. These results may provide a biological explanation for the observed predominance of the virulent exoU genotype in FQ-resistant clinical subpopulations and represent the first investigation into potential differences in fitness costs of FQ-resistance that are linked to the virulence genotype of P. aeruginosa. Understanding the fitness costs of antibiotic resistance and possibilities of compensation for these costs is essential for the rational development of strategies to combat the problem of antibiotic resistance.
منابع مشابه
فراوانی ژنهای کد کننده سیتوتوکسینهای exoT، exoY، exoS وexoU سیستم ترشحی تیپ 3 در سودوموناس آئروجینوزا جدا شده از بیماران سوختگی
Background and Objective: Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial burn infections. Disease results from the production of numerous virulence factors, some of which are injected directly into the eukaryotic host cells via the type III secretion system (T3SS).The aim of this study was to determine the prevalence of cytotoxins encoding exoT, exoY, exoS and exoU genes...
متن کاملCarbapenem and Fluoroquinolone Resistance in Multidrug Resistant Pseudomonas aeruginosa Isolates from Al-Zahra Hospital, Isfahan, Iran
Introduction: The major resistance mechanisms of Pseudomonas aeruginosa to fluoroquinolones and carbapenems are associated with the mutations in the genes gyrA and oprD encoding type II topoisomerases (DNA gyrase) and OprD porin, respectively. Method: In this cross-sectional study, sixty five clinical samples were collected from patients hospitalized in Al-Zahra Hospital of Isfahan, Iran. Susce...
متن کاملMolecular Investigation of Outer Membrane Channel Genes Among Multidrug Resistance Clinical Pseudomonas Aeruginosa Isolates
Background: Multidrug resistance Pseudomonas aeruginosa (MDRPA) is most important issue in healthcare setting. It can secrete many virulence effector proteins via its secretion system type (T1SS-T6SS). They are using them as conductor for delivering the effector proteins outside to begins harmful effect on host cell increasing pathogenicity, competition against other microorganism and nutrient ...
متن کاملAssociation between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review
Pseudomonas aeruginosa uses a complex type III secretion system to inject the toxins ExoS, ExoT, ExoU, and ExoY into the cytosol of target eukaryotic cells. This system is regulated by the exoenzyme S regulon and includes the transcriptional activator ExsA. Of the four toxins, ExoU is characterized as the major virulence factor responsible for alveolar epithelial injury in patients with P. aeru...
متن کاملDifferentiation in Quinolone Resistance by Virulence Genotype in Pseudomonas aeruginosa
Pseudomonas aeruginosa is a leading pathogen that has become increasingly resistant to the fluoroquinolone antibiotics due to widespread prescribing. Adverse outcomes have been shown for patients infected with fluoroquinolone-resistant strains. The type III secretion system (TTSS) is a major virulence determinant during acute infections through the injection of effector toxins into host cells. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016