Lubin-Tate Theory

نویسنده

  • Vitaly Lorman
چکیده

Motivation: We seek to understand the stable homotopy category by understanding the structure of the moduli stack of formal groups. Over algebraically closed fields, this is straightforward. If char(k) = 0, every formal group law is isomorphic to the additive one and we’ve described the group of automorphisms (coordinates changes) before. If char(k) = p > 0 every formal group law is classified by its height. Furthermore, the automorphism group of a height n formal group law over k is the Morava stabilizer group Sn, which can be described as the units in a certain division algebra. For fields of characteristic p that are not algebraically closed, we can do Galois descent (a good topic for a future talk). The next case to consider is a complete local Noetherian ring with residue field k of characteristic p > 0. Goal: Describe formal group laws over complete local Noetherian rings and their automorphisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Class Field Theory via Lubin-Tate Theory

We give a self-contained proof of local class field theory, via Lubin-Tate theory and the Hasse-Arf theorem, refining the arguments of Iwasawa [4].

متن کامل

Galois Representations and Lubin-Tate Groups

Using Lubin-Tate groups, we develop a variant of Fontaine’s theory of (φ,Γ)-modules, and we use it to give a description of the Galois stable lattices inside certain crystalline representations.

متن کامل

Semistable models for modular curves of arbitrary level

We produce an integral model for the modular curve X(Np) over the ring of integers of a sufficiently ramified extension of Zp whose special fiber is a semistable curve in the sense that its only singularities are normal crossings. This is done by constructing a semistable covering (in the sense of Coleman) of the supersingular part of X(Np), which is a union of copies of a Lubin-Tate curve. In ...

متن کامل

Self-duality and parity in non-abelian Lubin–Tate theory

We give a geometric proof of a “parity-switching” phenomenon that occurs when applying the local Langlands and Jacquet–Langlands correspondence to a self-dual supercuspidal representation ofGL(n) over a nonarchimedean local field. This turns out to reflect a duality property on the self-dual part of the `-adic étale cohomology of the Lubin–Tate tower.

متن کامل

Continuous Homotopy Fixed Points for Lubin-tate Spectra

We provide a new and conceptually simplified construction of continuous homotopy fixed point spectra for Lubin-Tate spectra under the action of the extended Morava stabilizer group. Moreover, our new construction of a homotopy fixed point spectral sequence converging to the homotopy groups of the homotopy fixed points of Lubin-Tate spectra is isomorphic to an Adams spectral sequence converging ...

متن کامل

Survey on Non-abelian Lubin-tate Theory

We give a survey, for non-experts, of the non-abelian Lubin-Tate theory, a cohomological realization of the local Langlands correspondence over p-adic fields. As its proof at the moment (mostly given by the work of Harris-Taylor [HT]) requires global techniques using certain Shimura varieties, we will treat the arithmetic geometry of these Shimura varieties, including some of the recent develop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013