Structural Cut Elimination
نویسنده
چکیده
We present new proofs of cut elimination for intuitionistic, classical, and linear sequent calculi. In all cases the proofs proceed by three nested structural inductions, avoiding the explicit use of multi-sets and termination measures on sequent derivations. This makes them amenable to elegant and concise implementations in Elf, a constraint logic programming language based on the LF logical framework.
منابع مشابه
Which structural rules admit cut elimination? An algebraic criterion
Consider a general class of structural inference rules such as exchange, weakening, contraction and their generalizations. Among them, some are harmless but others do harm to cut elimination. Hence it is natural to ask under which condition cut elimination is preserved when a set of structural rules is added to a structurefree logic. The aim of this work is to give such a condition by using alg...
متن کاملTowards an algorithmic construction of cut-elimination procedures
We investigate cut-elimination in propositional substructural logics. The problem is to decide whether a given calculus admits (reductive) cut-elimination. We show that, for commutative single-conclusion sequent calculi containing generalized knotted structural rules and arbitrary logical rules, the problem can be decided by resolution-based methods. A general cut-elimination proof for these ca...
متن کاملClassical Proofs via Basic Logic
Cut-elimination, besides being an important tool in proof-theory, plays a central role in the proofs-as-programs paradigm. In recent years this approach has been extended to classical logic (cf. Girard 1991, Parigot 1991, and recently Danos Joinet Schellinx 1997). This paper introduces a new sequent calculus for (propositional) classical logic, indicated by ? C. Both, the calculus and the cut-e...
متن کاملStructural Cut Elimination: I. Intuitionistic and Classical Logic
We present new variants of known proofs of cut elimination for intui-tionistic and classical sequent calculi. In both cases the proofs proceed by three nested structural inductions, avoiding the explicit use of multi-sets and termination measures on sequent derivations. This makes them amenable to elegant and concise representations in LF, which are given in full detail.
متن کاملA Systematic Proof Theory for Several Modal Logics
The family of normal propositional modal logic systems are given a highly systematic organisation by their model theory. This model theory is generally given using Kripkean frame semantics, and it is systematic in the sense that for the most important systems we have a clean, exact correspondence between their constitutive axioms as they are usually given in a Hilbert style and conditions on th...
متن کامل