Selected Developments in Computational Electromagnetics for Radio Engineering
نویسندگان
چکیده
Dissertation for the degree of Doctor of Science in Technology to be presented with due permission for public examination and debate in Auditorium S4 at Helsinki University of Technology (Espoo, Finland) on the 26th of May 2001 at 12 o'clock noon. which are all gratefully acknowledged. Finally, I use the opportunity to express my gratitude to my wife Mari, who took the risk to marry a numerician. Abstract This thesis deals with the development and application of two simulation methods commonly used in radio engineering, namely the Finite-Difference Time-Domain method (FDTD) and the Finite Element Method (FEM). The main emphasis of this thesis is in FDTD. FDTD has become probably the most popular computational technique in radio engineering. It is a well established, fairly accurate and easy-to-implement method. Being a time-domain method, it can provide wide-band information in a single simulation. It simulates physical wave propagation in the computational volume, and is thus especially useful for educational purposes and for gaining engineering insight into complicated wave interaction and coupling phenomena. In this thesis, numerical dispersion taking place in the FDTD algorithm is analyzed, and a novel dispersion reduction procedure is described, based on artificial anisotropy. As a result, larger cells can be used to obtain the same accuracy in terms of dispersion error. Simulation experiments suggest that typically the dispersion reduction allows roughly doubling the cell size in each coordinate direction, without sacrificing the accuracy. The obtainable advantage is, however, dependent on the problem. In the open literature, a few other procedures are also presented to reduce the dispersion error. However, the rather dominating effect of unequal grid resolution along different coordinate directions has been neglected in previous studies. The so-called Perfectly Matched Layer (PML) has proven to be a very useful absorbing boundary condition (ABC) in FDTD simulations. It is reliable, works well in wide frequency band and is easy to implement. The most notable deficiency of PML is that it enlarges the computational volume-in open 3-D structures easily by a factor of two. However, due to its advantages, PML has become a standard ABC. In this thesis, the operation of PML in FDTD has been studied theoretically, and some interesting properties of it not known before are uncovered. For example, it is shown that, surprisingly, PML can absorb perfectly (i.e. with zero reflection) plane waves propagating towards almost arbitrary given direction at given frequency. Optimizing the conductivity profile …
منابع مشابه
978 - 0 - 521 - 51891 - 8 - Computational Electromagnetics for RF and Microwave Engineering , Second Edition
Even if we do discover a complete unified theory, it would not mean that we would be able to predict events in general . . . even if we do find a complete set of basic laws, there will still be in the years ahead the intellectually challenging task of developing better approximation methods, so that we can make useful predictions of the probable outcomes in complicated and realistic situations....
متن کاملDevelopment of a free anthropomorphic voxel model of human body for wide-band computational electromagnetics dosimetry
To calculate and evaluate wave scattering and penetration of electromagnetic waves in different biological tissues it is necessary to use a realistic model of the human body, with all tissues resolved and separately assigned with appropriate electric/magnetic properties. We report the development of a realistic 3D whole-body human model that has been adapted for simulation in CST software, cont...
متن کاملMeasurement and Computational Modeling of Radio-Frequency Electromagnetic Power Density Around GSM Base Transceiver Station Antennas
Evaluating the power densities emitted by GSM1800 and GSM900 BTS antennas isconducted via two methods. Measurements are carried out in half a square meter grids around twoantennas. CST Microwave STUDIO software is employed to estimate the power densities in order fordetailed antenna and tower modeling and simulation of power density. Finally, measurements obtainedfrom computational and experime...
متن کاملPml as an Efficient Abc for Lossy Media
Berenger's perfectly matched layers (PML) has been found very e cient as a material absorbing boundary condition (ABC) for nite-di erence time-domain (FDTD) modeling of lossless media. In this paper, we apply the PML ABC to lossy media. The new ABC is shown to work excellently for lossy media too, provided that the appropriate PML pro les are selected. We nd that an e cient PML pro le is usuall...
متن کاملPerformance Engineering of GemsFDTD Computational Electromagnetics Solver
Since modern high-performance computer systems consist of many hardware components and software layers, they present severe challenges for application developers who are primarily domain scientists and not experts with continually evolving hardware and system software. Effective tools for performance analysis are therefore decisive when developing performant scalable parallel applications. Such...
متن کامل