Dysregulated A to I RNA editing and non-coding RNAs in neurodegeneration
نویسنده
چکیده
RNA editing is an alteration in the primary nucleotide sequences resulting from a chemical change in the base. RNA editing is observed in eukaryotic mRNA, transfer RNA, ribosomal RNA, and non-coding RNAs (ncRNA). The most common RNA editing in the mammalian central nervous system is a base modification, where the adenosine residue is base-modified to inosine (A to I). Studies from ADAR (adenosine deaminase that act on RNA) mutants in Caenorhabditis elegans, Drosophila, and mice clearly show that the RNA editing process is an absolute requirement for nervous system homeostasis and normal physiology of the animal. Understanding the mechanisms of editing and findings of edited substrates has provided a better knowledge of the phenotype due to defective and hyperactive RNA editing. A to I RNA editing is catalyzed by a family of enzymes knows as ADARs. ADARs modify duplex RNAs and editing of duplex RNAs formed by ncRNAs can impact RNA functions, leading to an altered regulatory gene network. Such altered functions by A to I editing is observed in mRNAs, microRNAs (miRNA) but other editing of small and long ncRNAs (lncRNAs) has yet to be identified. Thus, ncRNA and RNA editing may provide key links between neural development, nervous system function, and neurological diseases. This review includes a summary of seminal findings regarding the impact of ncRNAs on biological and pathological processes, which may be further modified by RNA editing. NcRNAs are non-translated RNAs classified by size and function. Known ncRNAs like miRNAs, smallRNAs (smRNAs), PIWI-interacting RNAs (piRNAs), and lncRNAs play important roles in splicing, DNA methylation, imprinting, and RNA interference. Of note, miRNAs are involved in development and function of the nervous system that is heavily dependent on both RNA editing and the intricate spatiotemporal expression of ncRNAs. This review focuses on the impact of dysregulated A to I editing and ncRNAs in neurodegeneration.
منابع مشابه
Dysregulated Expression of Long Intergenic Non-coding RNAs (LincRNAs) in Urothelial Bladder Carcinoma
Long intergenic non-coding RNA (lincRNA) has been introduced as key regulators of diverse biological processes, including transcription, chromatin organization, cell growth and tumorigenesis. With regard to the potential role of lincRNAs in cancer development, one may postulate that differential expression of lincRNAs could be employed as a tool in cancer diagnosis, prognosis, and targeted ther...
متن کاملDysregulated Expression of Long Non-Coding RNA MINCR and EZH2 in Colorectal Cancer
Background: As critical regulators, lncRNAs have attracted attention from researchers for diagnostic, prognostic, and therapeutic purposes in human carcinogenesis via interfering with mRNAs such as EZH2. Nevertheless, the potent roles and molecular mechanisms of these RNAs in CRC are not clearly known. Methods: In this study, the tissue expressions of lncRNA MINCR and EZH2 mRNA between colorect...
متن کاملUncovering RNA Editing Sites in Long Non-Coding RNAs
RNA editing is an important co/post-transcriptional molecular process able to modify RNAs by nucleotide insertions/deletions or substitutions. In human, the most common RNA editing event involves the deamination of adenosine (A) into inosine (I) through the adenosine deaminase acting on RNA proteins. Although A-to-I editing can occur in both coding and non-coding RNAs, recent findings, based on...
متن کاملA-to-I RNA Editing: Current Knowledge Sources and Computational Approaches with Special Emphasis on Non-Coding RNA Molecules
RNA editing is a dynamic mechanism for gene regulation attained through the alteration of the sequence of primary RNA transcripts. A-to-I (adenosine-to-inosine) RNA editing, which is catalyzed by members of the adenosine deaminase acting on RNA (ADAR) family of enzymes, is the most common post-transcriptional modification in humans. The ADARs bind double-stranded regions and deaminate adenosine...
متن کاملUp-Regulation of TPT1-AS1 and SAMMSON and Down-Regulation of LINC00961 Long Non-Coding RNAs (lncRNAs) as Potential Tumor Markers in Gastric Cancer
Background and Objective:Gastric Cancer (GC) is one of the deadliest cancers in the world. Recently, LINC00961, TPT1-AS1, and SAMMSON Long non-coding RNA (lncRNAs)have been discovered, which significantly contribute to the occurrence of various cancers. This study aimed to determine the expression levels of these genes in GC tissues, compared to healthy adjacent tissues, and the relationship of...
متن کامل