Jack Polynomials and Hilbert Schemes of Points on Surfaces
نویسنده
چکیده
The Jack (symmetric) polynomials P (α) λ (x) form a class of symmetric polynomials which are indexed by a partition λ and depend rationally on a parameter α. They reduced to the Schur polynomials when α = 1, and to other classical families of symmetric polynomials for several specific parameters. Recently they attracts attention from various points of view, for example the integrable systems and combinatorics. They are simultaneous eigenfunctions of certain commuting families of differential operators, appearing in the integrable system called the Calogero-Sutherland system (see e.g., [2] and the reference therein). On the other hand, Macdonald studied their combinatorial properties. In fact, he introduced an even more general class of symmetric functions (a two parameter family), which have many common combinatorial features as Jack polynomials (see [17, Chapter 6]). It is well-known that Schur polynomials can be realized as certain elements of homology groups of Grassmann manifolds (see e.g., [9, Chapter 14]). The purpose of this paper is to give a similar geometric realization for Jack polynomials. However, spaces which we use are totally different. Our spaces are Hilbert schemes of points on a surface X which is the total space of a line bundle L over the projective line CP. The parameter α in Jack polynomials relates to our surface X by
منابع مشابه
The Cohomology Rings of Hilbert Schemes via Jack Polynomials
Fundamental and deep connections have been developed in recent years between the geometry of Hilbert schemes X [n] of points on a (quasi-)projective surface X and combinatorics of symmetric functions. Among distinguished classes of symmetric functions, let us mention the monomial symmetric functions, Schur polynomials, Jack polynomials (which depend on a Jack parameter), and Macdonald polynomia...
متن کاملAn Identity of Jack Polynomials
In this work we give an alterative proof of one of basic properties of zonal polynomials and generalised it for Jack polynomials
متن کاملIntegral Operators and Integral Cohomology Classes of Hilbert Schemes
The methods of integral operators on the cohomology of Hilbert schemes of points on surfaces are developed. They are used to establish integral bases for the cohomology groups of Hilbert schemes of points on a class of surfaces (and conjecturally, for all simply connected surfaces).
متن کاملRichardson and Chebyshev Iterative Methods by Using G-frames
In this paper, we design some iterative schemes for solving operator equation $ Lu=f $, where $ L:Hrightarrow H $ is a bounded, invertible and self-adjoint operator on a separable Hilbert space $ H $. In this concern, Richardson and Chebyshev iterative methods are two outstanding as well as long-standing ones. They can be implemented in different ways via different concepts.In this paper...
متن کاملThe geometry of the parabolic Hilbert schemes
Let X be a smooth projective surface and D be a smooth divisor over an algebraically closed field k. In this paper, we discuss the moduli schemes of the ideals of points of X with parabolic structures at D. They are called parabolic Hilbert schemes. The first result is that the parabolic Hilbert schemes are smooth. And then some of the studies of Ellingsrud-Strømme, Göttsche, Cheah, Nakajima an...
متن کامل